Staff Report of the # CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION AGRICULTURAL DRAINAGE CONTRIBUTION TO WATER QUALITY IN THE GRASSLAND WATERSHED OF WESTERN MERCED COUNTY, CALIFORNIA: OCTOBER 1995 - SEPTEMBER 1997 (WATER YEARS 1996 AND 1997) **DECEMBER 1998** #### State of California California Environmental Protection Agency ### REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION Edward Schnabel, Chair Steven Butler, Vice Chair Chuck Ahlem, Member Jane Papazian, Member Craig Pedersen, Member William Porter, Member John Sharrah, Member Patricia M. Smith, Member Clifford C. Wisdom, Member Gary M. Carlton, Executive Officer 3443 Routier Road, Suite A Sacramento, California 95827-3003 > Phone: (916) 255-3000 CalNet: 8-494-3000 #### DISCLAIMER This publication is a technical report by staff of the California Regional Water Quality Control Board, Central Valley Region. No policy or regulation is either expressed or intended. #### Staff Report of the #### CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY ## REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION # AGRICULTURAL DRAINAGE CONTRIBUTION TO WATER QUALITY IN THE GRASSLAND WATERSHED OF WESTERN MERCED COUNTY, CALIFORNIA: OCTOBER 1995 - SEPTEMBER 1997 (WATER YEARS 1996 AND 1997) #### DECEMBER 1998 #### REPORT PREPARED BY: Jeanne Chilcott, Associate Land and Water Use Analyst Les Grober, Associate Engineering Geologist Jan Eppinger, Student Intern Armando Ramirez, Student Intern Many thanks to the staff and students of the Agricultural Unit without whose efforts during field sampling, quality control, and data processing, this report would not have been possible. #### TABLE OF CONTENTS | Executive Summary | |--| | Introduction | | Study Area | | Sampling Program | | Sample Collection Methods 7 Grab Samples 7 Composite Samples 7 | | Quality Control and Quality Assurance | | Complete Mixing at Mud Slough (north) Downstream of the San Luis Drain | | Field versus Laboratory Filtration | | Results 16 Water Year 1996 16 Inflow Monitoring Stations 16 Internal Flow Monitoring Stations 21 Outflow Monitoring Stations 21 Composite Samples 21 Water Year 1997 21 San Luis Drain and Mud Slough (north) 24 Wetland Water Supply Channels and Salt Slough 27 Daily Composite Samples 33 Discussion 33 Comparison of Water Year 1996 with Water Year 1997 33 Comparison to Applicable Water Quality Objectives 38 Loads of Salt, Boron and Selenium 45 References 55 | | APPENDICES | | APPENDIX A: Water Quality Data for Grab Samples: Water Year 1996 | | APPENDIX B: Water Quality Data for Grab Samples: Water Year 1997 | | APPENDIX C: Water Quality Data from Sigma Autosamplers: Water Years 1996 and 1997 | | APPENDIX D: Impact of January 1997 Flood Flows Diverted Around the Grassland Bypass and into Camp 13 Ditch and the Agatha Canal | #### LIST OF TABLES | 1. | Water Quality Monitoring Sites in the Greecles AW (1 15 77) | PAG | |----------|--|------------| | 2. | Water Quality Monitoring Sites in the Grassland Watershed for Water Year 1996 | ••••• | | 3. | | | | | Water Year 1996 Grasslands Watershed Monitoring Sites, Sampling Frequencies, and Parameters Measured | | | 4. | Water Year 1997 Monitoring Sites, Sampling Frequencies, and Parameters | | | | Measured: Grasslands Rypass Project | | | 5. | Measured: Grasslands Bypass Project | 9 | | | Control Board Agricultural Drainage Monitorine Regional Water Quality | | | 6. | Control Board Agricultural Drainage Monitoring Program Assessment of Cross-Channel Mixing at Mud Slough (north) Downstream of | 12 | | | | | | 7. | Study: Lab vs Field Preservation Paired Compliance of the Complian | 12 | | 8. | Study: Lab vs Field Preservation Paired Sampling at the San Luis Drain | 13 | | | Crows Landing | | | 9. | Crows Landing Study: Field vs Lab Filtering | 13 | | 10 | The state of s | 13 | | | Water Year 1996 | | | 11. | Water Year 1996 | 17 | | | Water Year 1997. | | | 12. | Annual Minimum, Mean, and Maximum Electrical Conductivity, Boron, and | 17 | | | Selenium at Monitoring Sites Within the Crossley IV | | | | Selenium at Monitoring Sites Within the Grassland Watershed: Water Years 86-95, | | | 13. | 96 and 97 | 18 | | | the San Luis Drain | | | 14. | the San Luis Drain | 28 | | | | 3 | | 15. | San Luis Drain: Water Year 1997. | 29 | | ~~. | Selenium Concentrations in Supply Water to the Grassland Watershed: | | | 16. | October 1996 through September 1997. Boron, Selenium and Molyhdanum Water Conditional Conditions of the Grassiania watershed: | 32 | | | Boron, Selenium and Molybdenum Water Quality Objectives for Water Bodies Within the Grassland Watershed: Water Years 1996 | 1 | | 17. | the Grassland Watershed: Water Years 1996 and 1997 | 42 | | | Water Vears 1006 and 1007 | | | 18. | Selenium Water Quality Objective Exceedances in the Grassland Watershed: | 43 | | | Walla Teals 1990 and 1907 | | | 19. | Monthly Molybdenum Concentrations and Water Quality Objective Exceedances in the Grassland Watershod: Water Nov. 1006 | 43 | | | in the Grassland Watershed: Water Years 1996 and 1997 | | | 20. | Monthly and Annual Discharge and Salt, Boron and Selenium Loads and Flow | 43 | | | Weighted Concentrations for the Drainage Project Assay W. A. | | | 21. | Weighted Concentrations for the Drainage Project Area: Water Years 1996 and 1997. Monthly and Annual Discharge and Salt, Boron and Selenium Loads and Flow Weighted Concentrations for the Concentrations for the Concentrations. | 47 | | | Weighted Concentrations for the Grassland Watershed: Water Years 1996 and 1997 | | | | water Years 1996 and 1997 | 48 | | | | | | | LIST OF FIGURES | | | | • | ACE | | 1. | The Grassianu Watershell Within the Lower San Loadyin Divor Dogin | <u>AGE</u> | | 2. | | | | | Friant Dam: Water Years 1996 and 1997 | 1 ~ | | 3. | Friant Dam: Water Years 1996 and 1997 Electrical Conductivity, Boron and Selenium Concentrations in Panoche and Firebaugh Drains (Autosampler Data): Water Year 1006 | 15 | | | | 00 | | 4. | | | | | and Salt Slough (Autosampler Data): Water Year 1996 | 00 | | 5. | | | | <u>.</u> | Discharge Holli the San Lills Drain (Grab Data). Water Voor 1007 | 05 | | 6. | Stockhold Conductivity, Dolli and Scientiff Concentrations in Mand Class 1. (11) | 25 | | | Openicum and DOWNSHEARING INC. The Disconstruction the Con Livin Decision (C. 1 D. 1) | | | | Water Year 1997 | 26 | | | | ∠0 | | Fi | igures continued: | | |-----|--|-------------| | 7 | $\underline{\mathbf{p}}_{I}$ | <u>AGE</u> | | 7. | San Luis Drain: Water Year 1007 | | | 8. | Electrical Conductivity Boron and Solonian G | 29 | | 9. | Electrical Conductivity Boron and Solarian G | 30 | | 10 | San Luis Canal and Santa Fe Canal (Cast D.) | 21 | | 10 | Occupance of Grab Sample Data by Use of Automated Collection (Sigma) Sampler at Camp 13 Slough: Water Year 1997 | 31 | | 11 | Sampler at Camp 13 Slough: Water Year 1997 Selenium Concentrations in Almond Drive and Rice Drains: May 1985 to | 34 | | 12. | Electrical Conductivity Roron and Colonia G | 35 | | 13 | (Grab Data): Water Year 1007 | 36 | | 1.1 | Using Grab Sample Data and Autocomplete (6) | . 50 | | 14. | Comparison of
Electrical Conductivity, Boron and Selenium in Salt Slough at | . 37 | | | Water Years 1996 and 1997 | | | 15. | Comparison of Electrical Conductivity, Boron, and Selenium in Agatha Canal and Camp 13 Slough: Water Years 1996 and 1997 | . 39 | | 16. | Comparison of Electrical Conductivity B | . 40 | | 17. | Monthly Salt Loads Discharged from the D | 41 | | | Grassland Watershed Water Venn 1006 and 1007 | 40 | | | Grassland Watershed Water Vegrs 1006 and 1007 | 49 | | 19. | Grassland Watershed, Water Years 1996 and 1997 | 50 | | 20. | Annual Discharge from the Drainage Project Assay 141 G | 51 | | 21. | Water Years 1986 through 1997 | 52 | | | Annual Salt Load from the Drainage Project Area and the Grassland Watershed, Water Years 1986 through 1997 | <i>32</i> , | | 22. | Water Years 1986 through 1997 | 52 | | 23. | Annual Selenium Load from the Drainage Project A | 53 | | | Water Years 1986 through 1997 | 53 | #### **EXECUTIVE SUMMARY** Since May 1985, the Central Valley Regional Water Quality Control Board has conducted a water quality monitoring program in the San Joaquin Valley of California to assess the impacts of agricultural subsurface drainage on wetland water supply channels in the Grassland Watershed. The Grassland Watershed is a 370,000-acre area, west of the San Joaquin River covering portions of Merced and Fresno counties between the Tulare Lake Basin and the Orestimba Creek alluvial fan. The watershed contains both farmed land, including a 90,000 acre area known as the Drainage Project Area (DPA), and approximately 100,000 acres of wetland habitat, including State and Federal wildlife refuges and private gun clubs. The watershed is tributary to the San Joaquin River, with Mud Slough (north) and Salt Slough serving as the main drainage arteries. During the period covered by this report, 1 October 1995 through 30 September 1997 (Water Years 1996 and 1997), a major change occurred in the agricultural drainage water management in the Grassland Watershed: the advent of the Grassland Bypass Project (GBP). The project began operation on 23 September 1996 and consolidated subsurface agricultural drainage, which historically flowed through wetland water supply channels, into a single channel, allowing the drainage to bypass approximately 90 miles of wetland water supply channels and Salt Slough. The drainage was redirected into the final 28 miles of the San Luis Drain for discharge into the lower nine miles of Mud Slough (north) and eventually into the San Joaquin River. Data presented in this report represents the water quality in selected water bodies within the Grassland Watershed one year prior to and one year after the advent of the Bypass project. During Water Year 1996, water quality sampling was conducted at 17 sites within the Grassland Watershed and represented drainage from the DPA, internal wetland supply canals and overall discharge from the watershed. During Water Year 1997, the program was altered to reflect the changes in drainage water management resulting from the use of the Grassland Bypass. The remaining nine monitoring sites focused the program on providing data which could be used to evaluate the impact of the bypass. The primary constituents evaluated included electrical conductivity, boron and selenium, with more limited analyses of molybdenum, copper, chromium, lead, nickel, zinc, chloride and sulfate. Grab samples were collected on a weekly, monthly or quarterly schedule depending on the location and automated, composite samples were collected at selected sites to provide information on fluctuating concentrations and to provide a more complete data set for load calculations for salt, boron, and selenium. The San Joaquin River Index is used to classify water year type in the river basin based on total runoff (SWRCB, 1995). Both Water Year 1996 and 1997 were classified as wet water years with periods of localized flooding occurring during February and March of 1996 and during the end of January and early February 1997. During the flooding in 1997, the Grassland Bypass could not handle the volume of drainage from the DPA and a portion of subsurface agricultural drainage was diverted through the wetland water supply channels and into Salt Slough between 27 January and 5 February. During Water Year 1996, constituent concentrations followed trends observed during the previous years of study. The highest concentrations occurred in drains from the DPA, with elevated concentrations also apparent in Salt Slough. Internal channels had varying concentrations, depending on the routing of the subsurface agricultural drainage. Concentrations peaked in April 1996, as flood water receded and pre-irrigation began. During Water Year 1997, all subsurface agricultural drainage from the DPA was removed from the internal wetland supply canals and Salt Slough and rerouted to the final nine miles of Mud Slough (north) through the San Luis Drain. Electrical conductivity, boron and selenium concentrations in the internal canals and Salt Slough dropped significantly over previous water years with the lowest mean monthly and annual concentrations recorded since 1985. A corresponding increase in constituent concentrations was noted in Mud Slough (north), reflecting discharge from the San Luis Drain which reached concentrations of 5460 μ mhos/cm, 8.4 mg/L, and 107 μ g/L for electrical conductivity, boron, and selenium, respectively. ¹ A Water Year covers the time period from 1 October through 30 September of the following year. In October 1988, Central Valley Regional Board adopted water quality objectives for boron, molybdenum and selenium for Mud Slough (north) and Salt Slough and a selenium objective for water used to maintain wetland habitat (Resolution #88-195). The mean monthly boron objective (2.0 mg/L) depends on season and only applies from 15 March through 15 September, while the maximum objective applies year round.. In May 1996, the Regional Board adopted revised selenium water quality objectives for the two sloughs and for wetland water supply channels, as well as a compliance time schedule for Mud Slough (north). The selenium compliance time schedule does not require full compliance with the selenium objective until 1 October 2010. No water quality objectives have been adopted for the San Luis Drain. During Water Year 1996, based on composite sampling data, the boron objective (2.0 mg/L) was not exceeded in Mud Slough (north), but was exceeded almost continuously from March through July in Salt Slough, with concentrations just below 2.0 mg/L in April. During Water Year 1997, the objective was exceeded in Mud Slough (north) both upstream and downstream of the San Luis Drain discharge. Upstream of the discharge, the exceedances were limited to March and April and may be due to a number of factors including localized elevated levels in groundwater seepage, releases from wetlands, and other surface drainage. Downstream of the discharge, the objective was exceeded continuously from March through September. No boron objective exceedances were observed in Salt Slough, during Water Year 1997. The improved water quality is most likely the result of the diversion of DPA subsurface agricultural drainage out of that water body. During Water Year 1996, the applicable selenium water quality objective was only exceeded in Salt Slough, with monthly mean concentrations remaining above 10 μ g/L from December through September. The selenium objectives changed during Water Year 1997, to a 2 μ g/L monthly mean objective for Salt Slough and wetland water supply channels and a 5 μ g/L 4-day average objective for Mud Slough (north) that is subject to a compliance time schedule. The revised objectives were not exceeded in Salt Slough, during Water Year 1997, but were exceeded sporadically in the wetland water supply channels. Exceedances in the supply channels may be due to a number of factors including elevated selenium levels in supply water, releases from the DPA (both in response to flood events and seepage from gates and canals), inflows from other agricultural subsurface drainage sources, and local sources such as groundwater seepage and surface return flows. Selenium concentrations in Mud Slough (north) above the drainage discharge remained below 5 μ g/L, while monthly mean concentrations in the slough downstream of the drainage discharge remained above 5 μ g/L, however, the slough is subject to a compliance time schedule. Molybdenum concentrations remained consistent between the two water years for all sites except Mud Slough (north) downstream of the San Luis Drain discharge. Prior to Water Year 1997, the 19 μ g/L monthly mean molybdenum objective was not exceeded in either Mud Slough (north) or Salt Slough. During Water Year 1997, the molybdenum objective was exceeded downstream of the drainage discharge five times; in February, April, June, August and September. Molybdenum concentrations in the drainage discharge ranged from 22 μ g/L to 35 μ g/L. Salt, boron, and selenium loads for the DPA and the Grassland Watershed were calculated using the flow weighted monthly average of the available water quality data. In Water Year 1997, loads that previously had to be summed for individual sites in the DPA were consolidated into the San Luis Drain as part of the GBP. Discharge and loads from the DPA for Water Year 1997 are therefore based on discharge and loads from the GBP. Monthly discharge and monthly flow weighted average concentrations and loads for 1996 and 1997 for the Grassland Watershed are based on the combined discharge and loads for Mud Slough (north) and Salt Slough. Annual discharge from the DPA dropped 30 percent between Water Years 1996 and 1997, from approximately 53,000 acre-feet to approximately 37,500 acre-feet. Annual salt load for the DPA also dropped 30 percent from just under 200,000 tons in 1996 to 140,000 tons in 1997. Boron loads were practically
identical for both years at just over 700,000 pounds. Selenium loads from the DPA dropped 30 percent from approximately 10,000 pounds to under 7,000 pounds between 1996 and 1997. Annual discharge from the Grassland Watershed to the San Joaquin River was similar in both years, increasing slightly from approximately 270,000 acre-feet in 1996 to approximately 290,000 acre-feet in 1997. Annual salt load for the watershed was similar for both years, dropping from just over 475,000 tons to just under 450,000 tons, while boron loads increased from approximately 1.3 million pounds to 1.4 million pounds. Selenium loads dropped almost 20 percent, from 9,500 pounds in 1996 to 7,700 pounds in 1997. Although the DPA contributes large quantities of salt and boron, it is not the only source of these constituents in the basin. The DPA is, however, the primary source of selenium in the Grassland Watershed. In 1996, a higher selenium load was actually calculated in the DPA than in the watershed, which may be due to losses in the system or errors in the estimates used for calculating the loads. In 1997, the DPA accounted for 90 percent of the selenium load from the Grassland Watershed. Monthly loading of constituents depended on the season and on the weather pattern. In the DPA, constituent loads tended to increase in January and stay at elevated levels throughout the irrigation season, dropping off by September. The Grassland Watershed followed a similar pattern, but was greatly influenced by storm events during both Water Years 1996 and 1997. During 1996, the highest monthly loads of all constituents leaving the watershed were recorded during February and March. During 1997, the highest loading leaving the watershed occurred during January, February and March and corresponded to major storms and flooding. When compared to annual records since Water Year 1986, loads during wet Water Years 1996 and 1997 were comparable to loads for another wet water year (1986) but lower than loads during wet Water Year 1995. Water Year 1995 followed several years of dry and critically dry years. High loads of all constituents in 1995 likely resulted from the leaching of salts that had accumulated in the basin during previous years. Generally lower loads of all constituents in 1996 and 1997 were likely due to lower residual salt loads in the Grassland Watershed following a series of wet years and ongoing drainage management activities in the DPA. Water quality monitoring in the Grassland Watershed will continue to allow evaluation of management practices on instream water quality and on constituent loads. #### INTRODUCTION The Agricultural Unit of the Central Valley Regional Water Quality Control Board (Regional Board) initiated a water quality monitoring program in May 1985 to evaluate the effects of subsurface agricultural drainage on the water quality of canals, drains, and sloughs in the Grassland Watershed in western Merced County. The Grassland Watershed is located west of the San Joaquin River between the Tulare Lake Basin and the Orestimba Creek alluvial fan. The purpose of this monitoring program was to compile an on-going database of selected inorganic constituents found in agricultural drains that discharge to and flow through wildlife areas before entering the San Joaquin River. This database has been and continues to be used to develop and evaluate agricultural drainage reduction programs in the San Joaquin River Basin. This report contains laboratory results and a summary of water quality analyses for all constituents measured as part of the program during Water Years 1996 and 1997 (October 1995 through September 1997). These two years represent conditions one year prior to and one year after a major change in the agricultural drainage water management in the Grassland Watershed: the advent of the Grassland Bypass Project. The Grassland Bypass began operation on 23 September 1996. The project consolidated subsurface agricultural drainage, which historically flowed through wetland water supply channels, into a single channel, allowing the drainage to bypass approximately 90 miles of wetland water supply channels. This report presents the data collected during both years, and compares salinity (measured as electrical conductivity), boron and selenium water quality at selected sites with respect to hydrology, change in water management, and applicable water quality objectives. Water quality data collected during the previous years of study can be found in both a summary report presenting salinity, boron, and selenium information from May 1985 through September 1996 (Steensen et al., 1998) and in a series of annual reports presenting all water quality information collected (James et al., 1988; Chilcott et al., 1989; Westcot et al., 1990, 1991, and 1992; Karkoski and Tucker, 1993; Vargas et al., 1995; Chilcott et al., 1995; and Steensen et al., 1996). #### STUDY AREA The study area consists of the Grassland Watershed located west of the San Joaquin River between the towns of Newman and Mendota, in the San Joaquin River Basin in California. The watershed encompasses approximately 370,000 acres and includes the northern and southern divisions of Grassland Water District (GWD), and farmlands adjacent to the district. The watershed also contains a 90,000 acre area known as the Drainage Project Area (DPA), and approximately 100,000 acres of wetland habitat, including State and Federal wildlife refuges and private gun clubs (Figure 1). Prior to October 1996, agricultural lands east, west, and south of the GWD discharged subsurface agricultural drainage water (tile drainage) and surface runoff (irrigation tailwater) through the GWD. Subsurface drainage from this area often contains high concentrations of salt, selenium and other trace elements. This regional drainage flowed north through the GWD, carried by a network of canals that could divert water in several possible ways before discharging into Mud Slough (north) or Salt Slough. These two sloughs are tributary to the San Joaquin River and serve as the primary drainage outlets for the Grassland Watershed. After October 1996, all subsurface agricultural drainage from the DPA was rerouted into the Grassland Bypass which discharges into the final 28 miles of the San Luis Drain. The consolidated subsurface drainage is then released into the final nine miles of Mud Slough (north) for eventual discharge into the San Joaquin River. Consolidating the subsurface drainage removes the primary source of selenium in approximately 90 miles of canals which can supply water to wetland habitat. Reducing selenium in these water bodies is a primary goal of the project, since elevated concentrations of selenium have been documented to be hazardous to waterfowl (Skorupa, 1998). ² A water year lasts from October 1st of one year through September 30th of the next year. Figure 1. The Grassland Watershed Within the Lower San Joaquin River Basin. #### SAMPLING PROGRAM During Water Year 1996, water quality sampling was conducted at 17 sites within the Grassland Watershed: nine inflow sites to and four internal flow sites within the GWD and four outflow sites from the Grassland Watershed (Table 1). Inflow monitoring stations were located on drains that discharge into the GWD and are mainly situated at the southern end of the study area. Internal sites were located on canals within the GWD that carry or could carry subsurface tile drainage as it passes through, before discharging to the San Joaquin River. Outflow monitoring stations were located on water bodies which flow out of the Grassland Watershed. Mud Slough (north) and Salt Slough are the primary tributaries to the San Joaquin River that drain the Grassland Watershed and are described in detail in previous reports (Pierson et al., 1989a and 1989b). Mud Slough (north) at the San Luis Drain (MER542) and Salt Slough at Lander Avenue (MER531) are located near flow monitoring stations operated by the U.S. Geologic Survey and are two principal stations in this monitoring program. These two sites best represent the water quality of the drainage leaving the Grassland Watershed. Los Banos Creek at Highway 140 (MER554) drains into Mud Slough (north) upstream of the San Joaquin River but downstream of the site near the San Luis Drain. Mud Slough (north) at Newman Gun Club (MER551) represents the combined quality of Mud Slough (north) and Los Banos Creek. During Water Year 1997, the water quality monitoring program was altered to reflect the changes in drainage water management resulting from the use of the Grassland Bypass. With the consolidation of agricultural subsurface drainage, a majority of the inflow sites which historically contained the drainage, were eliminated from the sampling program. The remaining sites focused the monitoring program on providing data which could be used to evaluate the impact of the new bypass. Key sites which were maintained and provide comparison to pre-bypass conditions include: Camp 13 Slough and Agatha Canal (inflow); Santa Fe and San Luis Canals at Henry Miller Road (internal); and Mud Slough (north) at the San Luis Drain terminus and Salt Slough (outflow). In addition, three new sites were added to evaluate the discharge from the bypass itself: Mud Slough (north) upstream of the bypass discharge (MER536), discharge from the San Luis Drain (MER535), and inflow from the Grassland Bypass to the San Luis Drain at Check 17 (MER562). In total, water samples were collected at nine sites during Water Year 1997 (Table 2). #### SAMPLE COLLECTION METHODS Two distinct types of water samples were collected for this program: grab samples and automated composite samples. Although Regional Board staff collected all the water samples during Water Year 1996, staff from the Panoche Water District collected grab samples from five of the sites during Water Year 1997: Camp 13, Agatha Canal, Santa Fe Canal, San Luis Canal, and the Grassland Bypass inflow
to the San Luis Drain. Field measurements for water temperature, electrical conductivity (EC), and pH were conducted at all sites monitored by Regional Board staff. Follow up EC measurements were made on all samples at the Regional Board office laboratory: within 24 hours for samples collected by Regional Board staff and within 24 hours of receipt of samples from Panoche Water District staff. The types of samples, methods for collection and quality control and assurance are discussed below. #### **Grab Samples** During both Water Year 1996 and 1997, grab samples were collected on either a weekly, monthly or quarterly basis depending on site and the constituent to be analyzed (Tables 3 and 4). Analyses for EC, total boron, and total selenium were conducted on all samples. Selected sites were also monitored for molybdenum, copper, chromium, nickel, lead, and zinc on a monthly or quarterly basis. During Water Year 1997, samples were also analyzed for dissolved selenium and total suspended solids at both the inflow to and outflow from the San Luis Drain. Grab samples were collected in polyethylene bottles, usually within six feet of the bank. All sample bottles were rinsed with deionized water before use. All bottles were also rinsed three times with the water to be sampled prior to sample collection. All samples were kept on ice after collection and until Table 1. Water Quality Monitoring Sites in the Grassland Watershed for Water Year 1996 | Map Index* | RWQCB Site I.D. | Site Name | Site Type | |------------|-----------------|---|---------------| | I-1 | MER556 | Main (Firebaugh) Drain @ Russell Ave. | Inflow | | I-2 | MER501 | Panoche Drain | Inflow | | I-4 | MER506 | Agatha Canal @ Mallard Road | Inflow | | I-6 | MER504 | Hamburg Drain | Inflow | | I-7 | MER505 | Camp 13 Slough | Inflow | | I-8 | MER502 | Charleston Drain | Inflow | | I-9 | MER555 | Almond Drive Drain | Inflow | | I-10 | MER509 | Rice Drain | Inflow | | I-12 | MER528 | Salt Slough Ditch @ Hereford Road | Inflow | | T-1 | MER510 | CCID Main @ Russell Avenue | Internal Flow | | T-5 | MER519 | Sante Fe Canal @ Henry Miller Road | Internal Flow | | T-7A | MER532 | San Luis Canal @ Henry Miller Road | Internal Flow | | T-13 | MER548 | Porter-Blake Bypass | Internal Flow | | O-1 | MER551 | Mud Slough (N) @ Newman Gun Club | Outflow | | O-2 | MER542 | Mud Slough (N) downstream of the San Luis Drain | Outflow | | O-3 | MER554 | Los Banos Creek @ Highway 140 | Outflow | | O-4 | MER531 | Salt Slough @ Lander Avenue | Outflow | ^{*} Location Map in Appendix A Table 2. Water Quality Monitoring Sites in the Grassland Watershed for Water Year 1997 | Map Index* | RWQCB Site I.D. | Site Name | Site Type | |------------|-----------------|---|---------------| | I-4 | MER506 | Agatha Canal @ Mallard Road | Inflow | | I-7 | MER505 | Camp 13 Slough | Inflow | | T-5 | MER519 | Sante Fe Canal @ Henry Miller Road | Internal Flow | | T-7A | MER532 | San Luis Canal @ Henry Miller Road | Internal Flow | | O-2 | MER542 | Mud Slough (N) downstream of the San Luis Drain | Outflow | | 0-4 | MER531 | Salt Slough @ Lander Avenue | Outflow | | SLD-1 | MER562 | Inflow to San Luis Drain @ Check 17 | Internal Flow | | SLD-2 | MER535 | San Luis Drain @ Terminus | Outflow | | O-8 | MER536 | Mud Slough (N) Upstream of SLD | Internal Flow | ^{*} Location Map in Appendix B Table 3. Water Year 1996 Grassland Watershed Monitoring Sites, Sampling Frequencies, and Parameters Measured | | | 1 | a , , , , , , , , , , , , , , , , , , , | | | u | | | | | | | |---------|---|----------|---|----|----|-------|--------|---|----------|-----|-----------|----------| | C: TD | GU D | <u> </u> | | | (| Const | ituent | | | | Dissolved | Auto- | | Site ID | Site Description . | Temp | рΗ | EC | Se | Mo | TE's | В | Part Min | TSS | Se | Samplers | | MER501 | Panoche Drain @ O'Banion Gauge Station | W | W | W | W | 0 | | W | М | | | h | | MER502 | Charleston Drain @ CCID Main Canal | w | W | W | w | ò | | w | M | | | U | | MER504 | Hamburg Drain near Camp 13 Slough | w | W | W | w | ò | | w | M | | | | | MER505 | Camp 13 Slough @ Gauge Station | М | M | M | м | ` | | M | M | | i | | | MER506 | I Samue Canal C Intainate Road | M | M | M | М | | | M | M | | | | | MER509 | Rice Drain @ Mallard Road | М | M | M | Q | | | Q | Q | | | | | MER528 | Salt Slough Ditch @ Hereford Road | М | M | М | Q | | | Q | Q | | | | | MER555 | I difficult Billion | M | M | М | Q | | | Q | Q | | | i | | MER556 | Main (Firebaugh) Drain @ Russell Ave. | w | W | w | w | 0 | | w | M | | . | b | | MER510 | CCID Main @ Russell Ave. | М | М | М | Q | | | Q | Q | | | U | | MER519 | Santa Fe Canal @ Henry Miller Road | M | M | M | M | | | M | M | | | | | MER532 | San Luis Canal @ Henry Miller Road | M | M | M | М | | | M | M | | | | | MER548 | Porter-Blake Bypass | М | M | М | М | | | M | M | | | | | MER531 | Salt Slough @ Lander Ave. | W | w | W | w | Q | Q | w | M | | | L. | | MER542 | Mud Slough (N) Downstream of San Luis Drain | w | w | w | w | o | Q | w | M | | | Ь | | MER551 | Mud Slough @ Newman Gun Club | M | M | М | M | ٧ | 7 | M | M | | | b | | MER554 | Los Banos Creek @ Hwy 140 | M | M | M | O | | | 0 | 0 | | | | W = weekly M = monthly Q = quarterly (October, January, April, and July) b = Four day composite samples for Se and B I= Inflow T=Internal flow O=Outflow TE's: Trace Elements (Chromium, copper, lead, nickel, zinc) Part Min = B, Cl, SO4, and Hardness TSS=total suspended solids Table 4. Water Year 1997 Monitoring Sites, Sampling Frequencies, and Parameters Measured: Grasslands Bypass Project | | | The state of s | | | | | | | | | | | |---------|---|--|--------------|----|----------|----|------|-----------|----------|-----|----|----------| | | | | Constituents | | | | | Dissolved | Auto- | | | | | Site ID | Site Description | Temp | pН | EC | Se | Mo | TE's | В | Part Min | TSS | Se | Samplers | | MER505 | Camp 13 Slough @ Gauge Station | | | W | W | | | W | | | | C | | MER506 | Agatha Canal @ Mallard Road | | | w | w | | | w | | | | | | MER519 | Santa Fe Canal @ Henry Miller Road | | | w | w | | | w | | | | Ĺ | | MER532 | | | | w | w | | | w | | | | | | MER536 | | w | W | W | w | M | 0 | w | 0 | | | | | MER562 | Inflow at San Luis Drain: Check 17 | | | W | W | | | W | | W | w | | | MER535 | San Luis Drain @ Terminus | w | W | w | w | M | 0 | w | 0 | w | w | 2 | | MER542 | Mud Slough (N) Downstream of San Luis Drain | W | W | w | W | М | | W | 0 | | | h* | | MER531 | Salt Slough @ Lander Ave. | w | w | w | w | M | 0 | W | Q
O | | | b* | | * 1' | | | | | <u> </u> | | | * * * | | | | D., | *discontinued 3/25/97 (See appendices for miscellaneous discontinued site data) W = weekly M = monthly Q = quarterly (October, January, April, and July) a = daily composite sample for Se and B b = Four day composite samples for Se and B c = used intermittently between January and April 1997 I= Inflow T=Internal flow O=Outflow TE's: Trace Elements (Chromium, copper, lead, nickel, zinc) Part Min = B, Cl, SO4, and Hardness TSS=total suspended solids processing. Selenium, boron, and trace element samples were preserved by lowering the pH to less than 2 within 24 hours of collection, using reagent grade nitric acid. Mineral samples were kept on ice until submittal to the laboratory for analysis. #### **Composite Automated Samples** In addition to grab samples, four-day composite and daily sampling was conducted at selected sites through the use of automated Sigma sampling devices. During Water Year 1996, Sigma samplers were located at Panoche Drain, Firebaugh (Main) Drain, Mud Slough (north) downstream of the terminus of the San Luis Drain, and Salt Slough at Lander Avenue. Samplers were also intermittently installed
at Camp 13 and Agatha Canal to allow continuous data collection when access roads were inaccessible. These samplers were phased out during Water Year 1997, as more focus was placed on the impacts from the discharge from the Grassland Bypass Project. The Panoche Drain and Firebaugh (Main) Drain autosamplers were discontinued in January 1997, and the Salt Slough, Mud Slough (north), Camp 13 and Agatha Canal autosamplers were removed after 25 March 1997. In exchange, two autosamplers (one strictly backup) were installed on the San Luis Drain to collect daily composite samples. Each daily composite is made up of six 85 ml collections pulled at four hour intervals for a total sample volume of 510 ml. During both water years, autosamplers were serviced every two weeks. Both 4-day composite and daily samples were analyzed for EC, boron and selenium. Quality control and assurance methods for the autosamplers are discussed below. #### QUALITY CONTROL AND QUALITY ASSURANCE #### Standard Potential contamination from the reagent grade nitric acid used to control pH was evaluated by submitting a deionized water matrix preserved with the normal amount of acid used (1 ml nitric acid per 500 ml of sample), to the analyzing laboratories at monthly intervals to be analyzed for the trace elements of concern. All reported recoveries for these acid check samples were below the analytical detection limit. Field and handling contamination was evaluated by submitting a travel blank on a monthly basis. The travel blank consisted of a sample of deionized (DI) water which was collected at the Regional Board laboratory, traveled through the sampling run, and was then processed with the sample set. All results for travel blanks fell below the analytical detection limits for the elements of concern. Additional quality control and quality assurance was conducted using blind split and spiked samples. Blind split samples were collected at a ten percent frequency for each sampling event by collecting the sample in a container double the normal sample volume and splitting that sample into two equal amounts for submittal to the analyzing laboratory. On a monthly basis, half of the blind split samples were spiked with known concentrations of constituents to be analyzed. Comparing the spiked splits to the background splits provided information on analytical accuracy. Comparing data from nonspiked splits provided information on analytical precision. To evaluate the potential for contamination and evapo-concentration in samples collected using autosampler, a series of special checks were developed. First, whenever the sampler was serviced, a deionized blank sample, without a cap, was left in the collection base to be collected on the next servicing and analyzed for potential contamination. Second, during each servicing, replicate "grab" samples were collected through the autosampler mechanism, one was left in the sampler to be collected at the next servicing and the other was processed for immediate analyses. Final results of the two grabs were evaluated to determine concentration or dilution potentials. During WY 97, samples for dissolved selenium were collected at two locations (MER535 and MER562). These samples required field filtration through an $0.45~\mu m$ cartridge system. To prevent and evaluate potential contamination, the equipment was soaked in a two percent nitric acid solution between usages, and rinsed three times in DI water. The new filters were conditioned at the time of sampling by allowing the first 10 ml of water passed through to be discarded before the remaining sample was collected. Approximately quarterly, filter blanks were collected using the Regional Board laboratory DI water and processing it through the standard equipment used in the field. Only data from sample sets whose blind QA/QC met specifications outlined in Table 5 have been included in this report. #### **Special Studies** With the advent of the Grassland Bypass Project, a number of State and Federal agencies (US Bureau of Reclamation, US Geological Survey, US Fish and Wildlife Service, California Regional Water Quality Control Board, and California Department of Fish and Game) became involved in monitoring potential environmental impacts from the Grassland Bypass Project. A Data Collection and Reporting Team (DCRT) was formed and chaired by the US Bureau of Reclamation to coordinate activities. This team intends to utilize information presented by the Regional Board to evaluate water quality impacts from the project and raised concerns on the following issues: - --complete mixing at Mud Slough (north) downstream of the San Luis Drain discharge; - --field preservation versus laboratory preservation within 24 hours; and - --field versus laboratory filtration for dissolved selenium analyses. #### Complete Mixing at Mud Slough (north) Downstream of the San Luis Drain Discharge Prior to the initiation of the project, there was concern by some members of the DCRT, that the proposed sampling location for Mud Slough (north) downstream of the San Luis Drain (the bridge over Mud Slough [north]) may be too close to the point of discharge to ensure sufficient mixing of the two flows. To assess the extent of mixing, the Regional Board divided the width of the Mud Slough (north) into five intervals. On four separate occasions depth integrated samples were collected from the bridge at each of the intervals and at mid channel; grab samples were also collected from the stream banks. The four sampling events included the range of seasonal flow conditions. Results from the sampling are presented in Table 6. Visual observation of the data shows almost no variability between samples within a sampling event. Coefficient of variations varied from 1.2 to 5.6 percent. This variation is well within analytical error. Also, there are no apparent trends in the distribution of selenium concentrations within a stream cross section. Statistical analysis of the data was not attempted because of the small sample size. From these results, it is concluded that the flow is sufficiently mixed at this location. #### Field versus Laboratory Preservation Samples collected for selenium require preservation with acid to a pH of 2. The Regional Board staff generally acidify samples in the laboratory within 12 hours of sample collection and not more that 24 hours after collection. Field acidification of samples, immediately after sample collection, is not routinely conducted by Regional Board staff due to safety concerns. A special study was conducted to assess the impacts of delaying sample preservation on sample integrity. Two paired samplings were conducted in which samples were collected and immediately split into two containers by incremental pouring of small volumes and agitating between pourings. One of the splits was immediately acidified in the field and the other was acidified at a later time as per standard sample handling protocol. A set of samples was collected along the San Luis Drain (Table 7) to represent a high selenium environment. Another set of samples was collected from the San Joaquin River at Crows Landing (Table 8) to represent a low selenium environment. Statistical analysis of the differences of the paired data was conducted. A test for normality according to the method of Shapiro and Wik (W test) (Gilber, 1987) demonstrated that the data were not normally distributed. Thus, a non-parametric technique, the sign test (Helseland Hirsch, 1997) was used to test the null hypothesis that the probability of x>y is equal to 0.5, where x and y are paired results. The Table 5. Quality Assurance Tolerance Guidelines Used in the Regional Water Quality Control Board Agricultural Drainage Monitoring Program. | Constituent | Recovery Range at
Low Levels (μg/L)* | Acceptable Split/Spike
Recovery Range | |---|--|--| | Copper Chromium Lead Molybdenum Nickel Selenium Zinc Boron Chloride | $1-20 \pm 5$ $1-20 \pm 5$ $5-25 \pm 8$ $1-10 \pm 2$ $5-25 \pm 6$ $0.4-10 \pm 0.8$ $1-20 \pm 6$ 50 5000 | >20 70-130%
>20 70-130%
>25 60-140%
>10 90-110%
>25 65-135%
>10 90-110%
>20 70-130%
85-115% | ^{*} For certain constituents, recovery is expressed as an absolute value rather than a percentage at low levels. For example, if the result of copper analysis for a particular sample is $10 \mu g/L$, a split analysis must fall between $5 \mu g/L$ and $15 \mu g/L$. If the sample is greater than $20 \mu g/L$, recovery is expressed as a percent and must be between 70 and 130%. If a recovery range is not shown at low levels, the detection limit is given. Table 6. Assessment of Cross-Channel Mixing at Mud Slough (north) Downstream of the San Luis Drain | | Selenium Concentration (ug/L) | | | | | | | | |---------|-------------------------------|------|--------|-------------|--------|--------|----------------|-----------| | Date | west bank grab | 7-8' | 14-15' | mid-channel | 23-28' | 30-35' | east bank grab | variation | | 10/1/96 | 49.2 | 49.2 | 49.5 | 48.9 | 49.1 | 48.9 | _ | 1.2 | | 3/20/97 | - | 32.8 | 32.2 | 32.7 | 32.4 | 32.4 | | 1.2 | | 6/27/97 | 54.6 | 54.6 | 54.2 | 55.8 | 55.8 | 56.1 | 54.6 | 3.4 | | 9/12/97 | 20.1 | 20.0 | 19.3 | 20.4 | 19.6 | 19.3 | _ | 5.6 | Table 7. Study: Lab vs Field Preservation Paired Sampling at San Luis Drain Terminus | | Selenium (ug/L) | | | | | | | | |-------------|-------------------------|-----------|-------|--|--|--|--|--| | Miles below | Preserved | Preserved | Diff. | | | | | | | Check 19 | in Lab | in Field | | | | | | | | 0.50 | 62.9 | 63.0 | 0.1 | | | | | | | 1.00 | 69.1 | 69.4 | 0.3 | | | | | | | 1.65 | 63.6 | 62.7 | -0.9 | | | | | | | 3.33 | 62.5 | 61.7 | -0.8
| | | | | | | 5.63 | 63.6 | 64.3 | 0.7 | | | | | | | 7.00 | 61.1 | 60.2 | -0.9 | | | | | | | 9.50 | 54.1 | 54.2 | 0.1 | | | | | | | 10.96 | 65.1 | 65.2 | 0.1 | | | | | | | 14.16 | 55.4 | 55.1 | -0.3 | | | | | | | 14.70 | 55.2 | 55.4 | 0.2 | | | | | | | 15.20 | 55.0 | 55.5 | 0.5 | | | | | | | 15.90 | 57.6 | 57.2 | -0.4 | | | | | | | 18.00 | 53.1 | 52.8 | -0.3 | | | | | | | 19.77 | 64.5 | 67.4 | 2.9 | | | | | | | 22.47 | 116 | 108 | -8.0 | | | | | | | 22.62 | 112 | 112 | 0.0 | | | | | | | 24.44 | 91.7 | 82 | -9.7 | | | | | | | 27.07 | 83.5 | 82.2 | -1.3 | | | | | | | | Mean: -1.0 | | | | | | | | | | Standard deviation: 3.0 | | | | | | | | Table 8. Study: Lab vs Field Preservation Paired Sampling at San Joaquin River, Crows Landing | Paired Sampling at San Joaquin River, Crows Landing | | | | | | | | | |---|-------------------------|-----------------|-----------|-------|--|--|--|--| | | | Selenium (ug/L) | | | | | | | | Feet from | Time | Preserved | Preserved | Diff. | | | | | | East Bank | Collected | in Lab | in Field | | | | | | | east bank | 930 | 2.41 | 2.40 | -0.01 | | | | | | 10 | 1110 | 2.48 | 2.42 | -0.06 | | | | | | 20 | 1120 | 2.42 | 2.44 | 0.02 | | | | | | 30 | 1126 | 2.51 | 2.62 | 0.11 | | | | | | 40 | 1131 | 2.53 | 2.66 | 0.13 | | | | | | 50 | 1135 | 2.58 | 2.60 | 0.02 | | | | | | 60 | 1141 | 2.58 | 2.61 | 0.03 | | | | | | 70 | 1146 | 2.58 | 2.54 | -0.04 | | | | | | 80 | 1151 | 2.64 | 2.62 | -0.02 | | | | | | 90 | 1157 | 2.67 | 2.63 | -0.04 | | | | | | 100 | 1201 | 2.64 | 2.56 | -0.08 | | | | | | 110 | 1207 | 2.48 | 2.58 | 0.10 | | | | | | west pier | 1246 | 2.66 | 2.63 | -0.03 | | | | | | center pier | 1247 | 2.63 | 2.58 | -0.05 | | | | | | east pier | 1248 | 2.58 | 2.64 | 0.06 | | | | | | Sigma* | 1305 | 2.65 | 2.62 | -0.03 | | | | | | |] | | | | | | | | | west bank | 1415 | 2.60 | 2.86 | 0.26 | | | | | | | Mean: 0.0 | | | | | | | | | | Standard deviation: 0.1 | | | | | | | | ^{* =} composite sampler Table 9. Study: Field vs Lab Filtering | Table 9. Study. Field 13 East Fittering | | | | | | | | | |---|---------------------------|-----------|-------------|-----------|--|--|--|--| | | Dissolved Selenium (µg/L) | | | | | | | | | | Inflow to | SLD | Discharge f | rom SLD | | | | | | Date | Field filt. | Lab filt. | Field filt. | Lab filt. | | | | | | 11/8/96 | 61.1 | 61.8 | 42.1 | 43.4 | | | | | | 11/19/96 | 57.0 | 58.8 | 75.2 | 77.3 | | | | | | 11/26/96 | 39.6 | 42.8 | 56.4 | 58.2 | | | | | | 12/5/96 | _ | _ | 31.0 | 28.8 | | | | | | 12/10/96 | 56.3 | 54.3 | 39.0 | 36.2 | | | | | | 12/20/96 | 80.2 | 81.0 | 49.0 | 51.1 | | | | | | 12/27/96 | 91.9 | 92.0 | 61.6 | 63.5 | | | | | | 1/9/97 | 76.6 | 72.4 | 34.2 | 32.4 | | | | | | 2/4/97 | 70.5 | 70.2 | 61.8 | 61.8 | | | | | | 2/11/97 | 96.6 | 94.2 | 78.4 | 78.4 | | | | | | 2/18/97 | 78.6 | 89.4 | 83.2 | 76.5 | | | | | SLD = San Luis Drain analysis failed to reject the null hypothesis at α equal to 0.01. The conclusion is that there is no difference in selenium concentrations between field and laboratory preserved samples. #### Field versus Laboratory Filtration The DCRT developed a coordinated monitoring plan which called for assessing dissolved selenium at the inflow and outflow of the San Luis Drain. This assessment requires filtering of samples through a $0.45~\mu m$ filter and analyzing the filtrate. Generally, this procedure is conducted in the field using a vacuum system or a peristaltic pump which draws sample through inert tubing into a filter apparatus. Due to resource limitations and logistical difficulties, the Regional Board did not immediately implement the collection of this sample. The Regional Board instead submitted the sample to a contract laboratory for filtration within 24 hours of collection. A revised filtration method was later suggested. In this revised procedure, a syringe and filter cartridge apparatus is used to quickly and inexpensively filter samples in the field. This procedure overcame the resource and logistical limitations and was subsequently implemented by Regional Board staff. The revised filtration method was evaluated as follows. To test the hypothesis of no difference in dissolved selenium concentration between samples filtered in the field and those filtered in the laboratory within 24-hours of sample collection, results for dissolved selenium were compared for paired samples filtered in the field and in the laboratory. Results of the paired results are presented on Table 9. The difference between the paired samples was tested for normality by the W test. The null hypothesis that the difference of the paired samples are normally distributed could not be rejected. Thus, the t-test was used to test the hypothesis that there is no difference between the means. The null hypothesis could not be rejected and thus, it is concluded that there is no difference between field versus laboratory (delayed) filtration. #### RAINFALL AND DISCHARGE PATTERNS The San Joaquin River Index, as described in the Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary (SWRCB, 1995) is used to classify water year type in the river basin based on runoff. The 60-20-20 Index includes one "wet" classification, two "normal" classifications (above and below normal), and two "dry" classifications (dry and critical), for a total of five water year types. Water years 1996 and 1997 were both classified as "wet" based on runoff exceeding 3.8 million acre feet. Mud Slough (north) and Salt Slough are the main water bodies that drain the Grassland Watershed. Daily flows in both sloughs are compared to the monthly rainfall at Friant Dam for Water Years 1996 and 1997 (Figure 2). Water Year 1996 saw flows peak in February and March, while Water Year 1997 saw the flows peak in late January due to an unusual 4.60 inches of rain for the month. The peaks and sustained highs which do not correspond to rainfall events are generally a result of groundwater, wetland discharges, and surface return flows. In addition, between 3 and 17 April 1996, groundwater which had accumulated in the San Luis Drain during years of disuse, was released into Mud Slough (north) under the provisions of the National Pollutant Discharge Elimination System (NPDES), Permit No. CA0083917. The permitted discharge of the groundwater was a regulatory necessity prior to the use of the drain to transport agricultural subsurface drainage. A total of 461 acre-feet of water was discharged over the 15-day period. The effects of the opening of the Bypass channel in September 1996, can be clearly seen in the comparison of flows from May through August in Water Years 1996 and 1997. The bulk of the subsurface drainage discharges went through Salt Slough in WY 96, whereas in WY 97, much of the discharge was rerouted through Mud Slough (north) via the San Luis Drain. High rainfall during WY 97 resulted in localized flooding which in turn resulted in the diversion of commingled agricultural subsurface and storm drainage flows from the DPA into water bodies flowing through the Grassland Figure 2. Flows in Mud Slough (north) and Salt Slough as Compared to Rainfall at Friant Dam: Water Years 1996 and 1997 Rainfall (inches) Rainfall (inches) 1.5 Salt Slough at Lander - Mud Slough (north) Precip (inches) "Salt Slough at Lander Mud Slough (north) JUL. Precip (inches) ΙΠ NO NE. MAYMAY Water Year 1996 Water Year 1997 MAR FEB JAN JAN NOV NOV OCT 800 200 700 900 500 300 800 400 100 500 300 200 100 700 900 400 Flow (cfs) Flow (cfs) 15 Watershed between 27 January and 5 February 1997. An extensive summary of the hydrology of the Grassland Watershed can be found in Steensen, *et al.*, (1998). #### RESULTS Grab sample water quality results for minerals and trace elements, as well as EC, pH, and temperature at time of sampling, are listed by site in Appendices A through C. Appendix A includes sites sampled in Water Year 1996 and Appendix B contains data for the sites sampled throughout Water Year 1997. All information collected using automated Sigma samplers is presented in Appendix C. The number of sampling events and the ranges, mean and median values for each measured constituent at each site are shown in these appendices. Results are presented below by water year. Water Year 1996 has been divided into results for the inflow, internal flow and outflow sites. Data for Water Year 1997 has been divided into results for the San Luis Drain and Mud Slough (north), and wetland water supply channels and Salt Slough. Also presented is data from the autosamplers which collected either four day or daily composites depending on the location (refer to Tables 3 and 4). Tables 10 and 11 list the median constituent concentrations for all water bodies monitored in the Grassland Watershed for Water Years 1996 and 1997, respectively. Table 12 summarizes annual minimum, mean and maximum EC, boron and selenium concentrations at locations sampled in the watershed during Water Years 1996 and 1997 and compares those values to the average range in concentration during the previous ten water years of record. The previous ten years of record contained seven critically dry years and three wet years as determined using the San Joaquin River Index (SWRCB, 1995). Since both Water Years 1996 and 1997 were classified as wet water years, the previous data record's summary information, although presented in full, has also been separated into critically dry years and wet years. #### Water Year 1996 #### **Inflow Monitoring Stations** The inflow monitoring stations represent the quality of water entering the grasslands area and include the following stations: Charleston Drain, Hamburg Drain, Firebaugh (Main) Drain, Panoche Drain, Almond Drive Drain, Rice Drain, Camp 13 Slough, Agatha Canal, and Salt Slough Ditch. Salt Slough Ditch at Hereford Road flows into the North Grassland area; the others flow into the South Grassland
area. The highest combined levels of salinity (based on EC), boron, and selenium were found at the Panoche, Hamburg, Firebaugh and Charleston Drains (Table 10). These drains primarily carry subsurface agriculture drainage from the DPA. Lower concentrations were recorded for the remaining inflow sites which are not as strongly dominated by subsurface agriculture drainage. The highest EC was recorded in the Hamburg Drain on 1 March 1996 (6890 μ mhos/cm) and the highest selenium concentration in the Firebaugh Drain (162 μ g/L), also on 1 March 1996. The highest boron concentrations were found in the Rice Drain. The Rice Drain, sampled on a quarterly basis in WY 96, had levels of boron ranging from 5.5 mg/L to 15 mg/L, with the maximum occurring on 25 January 1996, and variable levels of selenium (3.4 to 28.4 μ g/L). Data is too limited to determine if the concentrations at this site followed seasonal trends. Camp 13 and the Agatha Canal (sampled on a monthly basis) may carry a combination of supply water and/or agricultural drainage, therefore water quality fluctuated greatly during Water Year 1996. Concentrations at the Agatha Canal at Mallard were high in December, January, February and August (peaking in December with the EC at 4490 μ mhos/cm, selenium at 100 μ g/L, and boron at 6.3 mg/L). Low concentrations in the Agatha Canal were observed in September and October with the EC at 324 μ mhos/cm, selenium at 0.9 μ g/L, and boron at 0.12 mg/L. During this time period the Agatha Canal is used exclusively for wetland water deliveries. At Camp 13 Slough, EC, boron and selenium levels were elevated from November through July; particularly in November, January and April. The peak EC occurred in January at 4660 μ mhos/cm, while boron peaked in November and January at 6.9 mg/L. The maximum selenium concentration occurred in April at 88.8 μ g/L. The lowest concentrations in Camp 13 occurred in September with the EC dropping to 338 μ mhos/cm, boron to 0.13 mg/L, and selenium to 0.8 μ g/L. Table 10. Median Constituent Concentrations for Waterways within the Grassland Watershed: Water Year 1996. | | | EC | В | Cl | SO4 | Se | Мо | Cr | Cu | Ni | Pb | Zn | Hardness | |------|-----------------------------------|------------|------|-------|------|------|----|---------|--------|---------------|----|--------|----------| | Туре | Station | (umhos/cm) | | -mg/L | | | | | ug/L - | | | | mg/L | | I | *Main (Firebaugh) Drain | 2870 | 3.4 | 285 | 1100 | 48.8 | 26 | | | | | | 720 | | I | *Panoche Drain | 4555 | 7.0 | 605 | 1450 | 76.5 | 13 | | | | _ | | 1100 | | 1 | Agatha Canal | 588 | 2.3 | 66 | 97 | 3.6 | | | _ | **** | _ | _ | 120 | | I | Hamburg Drain | 4435 | 4.7 | 630 | 1550 | 57.8 | 6 | | | _ | | | 1600 | | I | Camp 13 | 3760 | 5.7 | 435 | 1100 | 57.4 | | _ | | _ | | | 915 | | I | Charleston Drain | 3940 | 3.5 | 470 | 1300 | 59.8 | 5 | _ | | | _ | | 1000 | | I | Almond Drain | 925 | 0.47 | 63 | 98 | 1.5 | _ | | _ | | | _ | 155 | | 34 | Rice Drain | 2590 | 6.0 | 290 | 960 | 10.1 | _ | | _ | _ | | | 600 | | I | Salt Slough @ Hereford | 744 | 0.27 | 114 | 103 | 0.8 | | | | | | | 200 | | T | CCID Main Canal | 558 | 0.42 | 23 | 23 | 0.9 | _ | | _ | . | | | 86 | | | Santa Fe Canal @ Henry Miller Rd. | 608 | 0.42 | 67 | 96 | 1.8 | | _ | _ | | _ | _ | 120 | | | San Luis Canal @ Henry Miller Rd. | 653 | 0.52 | 74 | 100 | 1.8 | _ | ****** | _ | _ | | ****** | 140 | | | Porter-Blake Bypass | 3155 | 4.4 | 330 | 920 | 37.8 | | ******* | | | | | 730 | | 0 | Salt Slough @ Lander* | 2060 | 2.0 | 290 | 520 | 16.0 | 9 | 12 | 8 | 14 | <5 | 26 | 450 | | 0 | Mud Slough @ Newman Gun Club | 1787 | 1.4 | 270 | 330 | 1.2 | | | _ | | | | 360 | | 0 | Los Banos Creek | 1297 | 1.2 | 205 | 220 | 0.6 | _ | | | _ | | | 305 | | 0 | Mud Slough @ San Luis Drain* | 1660 | 1.2 | 235 | 305 | 1.0 | 9 | 7 | 5 | 10 | <5 | 14 | 370 | ^{-:} Not analyzed I = Inflow O = Outflow T = Internal flow Table 11. Median Constituent Concentrations for Waterways within the Grassland Watershed: Water Year 1997. | | | EC | В | Cl | SO4 | Se | Mo | Cr | Cu | Ni | Pb | Zn | Hardness | |------|-----------------------------------|------------|------|-------|------|------|----|----|-----------------|----|----|----|----------| | Туре | Station | (umhos/cm) | | mg/L· | | | | | – ug/L – | | | | mg/L | | I | Agatha Canal | 432 | 0.2 | 55 | 43 | 1.2 | | | | | | | 87 | | I | Camp 13 | 520 | 0.4 | 64 | 49 | 1.6 | _ | | | | _ | | .30 | | Т | Santa Fe Canal @ Henry Miller Rd. | 833 | 0.83 | 59 | 54 | 2.1 | | _ | | | | _ | 110 | | T | San Luis Canal @ Henry Miller Rd. | 886 | 0.87 | | | 2.0 | | _ | _ | | _ | | | | 0 | Salt Slough @ Lander | 1320 | 0.7 | 190 | 200 | 1.0 | 7 | _ | _ | | | | 290 | | D | Inflow to San Luis Drain @ Ck 17 | 4390 | 7.5 | _ | | 66.4 | 22 | | | _ | | | | | D | San Luis Drain @ Terminus | 4330 | 7.1 | 460 | 1300 | 60.4 | 26 | | _ | _ | | | 1000 | | В | Mud Slough (N) Upstream of SLD | 1160 | 1.0 | 130 | 130 | 0.8 | 6 | | _ | _ | | | 200 | | 0 | Mud Slough dwnstrm of SLD | 3100 | 4.4 | 195 | 330 | 32.4 | 17 | | ****** | | _ | .— | 340 | | D | San Luis Drain @ Terminus* | 4420 | 7.2 | | | 61.5 | | | | | | | | ^{-:} Not analyzed I = Inflow O = Outflow D = agricultural drainage T = Internal flow B = background ^{*}Autosampler 4-day Composite Data for EC, B, and Se only. ^{*}Autosampler Daily Composite Data for EC, B, and Se only. Table 12. Annual Minimum, Mean, and Maximum Electrical Conductivity, Boron, and Selenium at Monitoring Sites Within the Grassland Watershed: Water Years 86-95, 96 and 97. | | | EC | EC (umhos/cm) Boron (mg/L) | | | Sel | enium (u | o/T.) | | | |---------------------------------------|------------|------------|----------------------------|--------|-------|-----------|-----------------|----------|-------------|--------| | Site | Count | | Mean | Max | Min | Mean | Max | Min Mean | | Max | | | | | | 111111 | 1,111 | I IVICALI | TTICLE | 1 272111 | l | I IIII | | Firebaugh (Main) Drain @ Russell Ave. | | | | | | | | | | | | WYs 86-95 | 334 | 255 | 3770 | 9090 | 0.12 | 5.3 | 23 | 1.0 | 65.0 | 286 | | WYs 86-95 (critical) | 212 | 2050 | 3770 | 9090 | 1.2 | 5.3 | 23 | 4.0 | 62.3 | 286 | | WYs 86-95 (wet) | 115 | 255 | 3940 | 8740 | 0.12 | 5.3 | 18 | 1.0 | 71.0 | 224 | | WY 96 | 50 | 1910 | 3310 | 6590 | 2.4 | 4.0 | 9.4 | 23.0 | 64.0 | 162 | | Panoche Drain | -50 | 1910 | 3310 | 0390 | 4.4 | 4.0 | 9. 4 | 23.0 | 04.0 | 102 | | WYs 86-95 | 296 | 2600 | 4560 | 5990 | 3.9 | 7.5 | 10 | 14.0 | 75.0 | 156 | | WYs 86-95 (critical) | 197 | 2700 | 4580 | 5860 | 3.9 | 7.5 | 10 | 14.0 | 73.6 | 156 | | WYs 86-95 (critical) | 92 | 3000 | 4640 | 5990 | 4.5 | 7.5 | 10 | 22.6 | 79.9 | | | WY 96 | 48 | 3440 | 4520 | 5380 | 3.8 | 7.1 | 9.4 | | | 146 | | Hamburg Drain | -40 | 3440 | 4320 | 2200 | 3.6 | /.1 | 9.4 | 19.7 | 79.1 | 137 | | WYs 86-95 | 318 | 366 | 7880 | 7480 | 0.10 | | 0.4 | 20 | 92.0 | 201 | | WYs 86-95 (critical) | 205 | 2900 | | 7100 | 0.19 | 5.5 | 9.4 | 3.8 | 82.0 | 201 | | WYs 86-95 (critical) WYs 86-95 (wet) | | | 5070 | | 2.1 | 5.5 | 9.0 | 17.1 | 88.9 | 201 | | | 107
49 | 366
383 | 4610 | 7480 | 0.6 | 5.5 | 9.4 | 3.8 | 72.6 | 200 | | Agatha Canal WY 96 | 49 | 202 | 4250 | 6890 | 0.24 | 4.7 | 9.7 | 1.5 | 59.5 | 129 | | | 224 | 160 | 2120 | 0100 | 0.07 | | | | 260 | 116 | | WYs 86-95
WYs 86-95 (critical) | 234
153 | 162 | 3120 | 8100 | 0.07 | 5.0 | 20 | 0.8 | 36.0 | 116 | | | | 430 | 3310 | 8100 | 0.10 | 5.4 | 20 | 0.8 | 37.6 | 114 | | WYs 86-95 (wet) | 74 | 162 | 2770 | 6600 | 0.12 | 4.3 | 15 | 1.0 | 34.0 | 120 | | WY 96 | 12 | 200 | 1940 | 4730 | 0.12 | 3.0 | 6.6 | 0.9 | 28.2 | 100 | | WY 97 | 43 | 187 | 518 | 4240 | 0.11 | 0.25 | 0.46 | 0.5 | 1.3 | 3.4 | | Camp 13 Slough | 064 | 0.00 | 2550 | (7100 | 0.10 | | - 10 | | #0.0 | | | WYs 86-95 | 264 | 266 | 3550 | 6700 | 0.18 | 5.0 | 10 | 0.9 | 52.0 | 144 | | WYs 86-95 (critical) | 185 | 390 | 3690 | 6700 | 0.22 | 5.1 | 10 | 1.0 | 53.1 | 123 | | WYs 86-95 (wet) | 72 | 266 | 3320 | 6510 | 0.18 | 4.7 | 9.3 | 0.9 | 50.8 | 144 | | WY 96 | 11 | 338 | 3410 | 4660 | 0.13 | 4.9 | 6.9 | 0.8 | 55.9 | 88.8 | | WY 97 | 42 | 172 | 822 | 3760 | 0.15 | 1.1 | 7.1 | 0.6 | 2.6 | 23.4 | | Charleston Drain | 246 | 204 | 44.40 | 10000 | 0.45 | 4.0 | | | | | | WYs 86-95 | 246 | 304 | 4140 | 10200 | 0.15 | 4.0 | 24 | 1.3 | 65.0 | 129 | | WYs 86-95 (critical) | 166 | 590 | 4170 | 10220 | 0.74 | 4.0 | 24 | 1.9 | 64.6 | 125 | | WYs 86-95 (wet) | 75 | 304 | 4110 | 6010 | 0.15 | 3.9 | 7.7 | 1.3 | 66.8 | 129 | | WY 96 | 46 | 553 | 3600 | 6370 | 0.48 | 3.2 | 5.4 | 4.2 | 53.8 | 103 | | Almond Drive Drain | 1.0 | | 1 = 40 | 0.500 | 0.53 | | | | | | | WYs 86-95 | 149 | 70 | 1560 | 3530 | <0.05 | 1.4 | 4.4 | 0.4 | 3.4 | 17 | | WYs 86-95 (critical) | 128 | 448 | 1670 | 3530 | 0.16 | 1.5 | 3.9 | 0.4 | 3.5 | 17 | | WYs 86-95 (wet) | 20 | 70 | 1050 | 3230 | 0.04 | 1.0 | 4.4 | 0.6 | 2.4 | 6.1 | | WY 96 | 4 | 220 | 1110 | 2700 | 0.10 | 0.68 | 1.7 | 0.7 | 3.0 | 8.4 | | Rice Drain | | 1070 | 0000 | 7700 | 0.07 | | | | | | | WYs 86-95 | 216 | 1070 | 2980 | 7700 | 0.85 | 5.9 | 19 | 1.0 | 3.2 | 36.0 | | WYs 86-95 (critical) 172 | | 1090 | 3000 | 7700 | 1.6 | 5.9 | 18 | 1.1 | 3.3 | 36.0 | | WYs 86-95 (wet) 36 | | 1070 | 2950 | 6900 | 0.85 | 5.8 | 19 | 1.0 | 3.0 | 10.0 | | WY 96 | 4 | 2050 | 3100 | 6300 | 5.5 | 8.1 | 15 | 3.4 | 13.0 | 28.4 | | Salt Slough Ditch @ Hereford Rd. | | | | | | | | | | | | WYs 86-95 | 222 | 430 | 1040 | 1950 | 0.10 | 0.35 | 1.1 | <0.4 | 1.1 | 22.0 | | WYs 86-95 (critical) | 177 | 680 | 1090 | 1950 | 0.15 | 0.35 | 0.99 | 0.4 | 1.1 | 22.3 | | WYs 86-95 (wet) | 42 | 430 | 907 | 1600 | 0.10 | 0.34 | 1.1 | <0.4 | 1.0 | 4.0 | | WY 96 | 4 | 515 | 836 | 1260 | 0.20 | 0.3 | 0.34 | 0.6 | 1.0 | 1.7 | Table 12 continued: | | | EC | C (umhos/ | cm) | В | Boron (mg/L) | | Sel | lenium (u | g/L) | |--------------------------------------|-------|------|-----------|-------|-------|--------------|-----
--|-----------|--| | Site | Count | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | | CCID Main Canal | | | | | | | | | | <u>' </u> | | WYs 86-95 | 213 | 50 | 719 | 4280 | <0.05 | 0.45 | 5.8 | <0.4 | 2.2 | 76.0 | | WYs 86-95 (critical) | 180 | 55 | 734 | 4280 | 0.10 | 0.42 | 5.2 | 0.4 | 2.3 | 76.0 | | WYs 86-95 (wet) | 33 | 50 | 584 | 2100 | <0.05 | 0.41 | 2.7 | 0.6 | 1.9 | 16.0 | | WY 96 | 3 | 56 | 526 | 1300 | <0.05 | 0.61 | 1.3 | <0.4 | 2.3 | 5.2 | | Santa Fe Canal | | | 3.20 | 1500 | 70.03 | 0.01 | 1.5 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2.3 | J.2 | | WYs 86-95 | 105 | 318 | 1440 | 4090 | 0.19 | 1.7 | 5.5 | <0.4 | 10.0 | 60.0 | | WYs 86-95 (critical) | 41 | 410 | 1210 | 4090 | 0.22 | 1.2 | 5.3 | 0.3 | 7.4 | 59.8 | | WYs 86-95 (wet) | 58 | 318 | 1580 | 3930 | 0.19 | 2.0 | 5.5 | 1.0 | 11.0 | 44.0 | | WY 96 | 12 | 188 | 675 | 1450 | 0.10 | 0.5 | 1.3 | 0.6 | 2.1 | 4.7 | | WY 97 | 42 | 339 | 941 | 1870 | 0.10 | 1.0 | 2.9 | 0.8 | 2.1 | 3.9 | | San Luis Canal | 72 | 337 | 741 | 10/0 | 0.24 | 1.0 | 4.9 | - 0.8 | 2.1 | 3.9 | | WYs 86-95 | 114 | 330 | 1690 | 4850 | 0.19 | 2.1 | 7.4 | 0.7 | 15.0 | 74.0 | | WYs 86-95 (critical) | 50 | 486 | 1220 | 4010 | 0.19 | 1.2 | | | | | | WYs 86-95 (critical) WYs 86-95 (wet) | 64 | 330 | 2050 | 4850 | 0.30 | 2.7 | 4.9 | 0.7 | 7.0 | 56.6 | | WY 96 | 12 | 196 | 918 | 3560 | 0.19 | 0.82 | 7.4 | 0.8 | 20.8 | 74.0 | | WY 97 | 41 | 501 | 973 | 1840 | | | 4.4 | 0.8 | 6.5 | 40.8 | | Porter-Blake Bypass | 71 | 201 | 913 | 1040 | 0.36 | 1.1 | 3.3 | 1.0 | 2.1 | 6.2 | | WYs 86-95 | 110 | 348 | 3110 | 4820 | 0.20 | 4.4 | 71 | 1.7 | 40.6 | 00.0 | | WYs 86-95 (critical) | 66 | 348 | 3100 | 4630 | 0.30 | 4.4 | 7.1 | 1.7 | 40.6 | 88.0 | | WYs 86-95 (critical) WYs 86-95 (wet) | 43 | 786 | | | 1.06 | 4.4 | 7.1 | 3.4 | 39.4 | 77.8 | | | 12 | | 3120 | 4820 | 0.30 | 4.5 | 6.9 | 1.7 | 42.4 | 88.0 | | Mud Slough (N) @ Newman Gun Club | 12 | 532 | 2830 | 3800 | 0.32 | 3.8 | 5.3 | 2.1 | 36.7 | 66.3 | | | 241 | 020 | 2100 | 7.570 | 0.10 | 0.0 | | | | | | WYs 86-95 | 241 | 230 | 3120 | 7570 | 0.10 | 2.8 | 7.0 | 0.5 | 8.4 | 48.0 | | WYs 86-95 (critical) | 206 | 909 | 3300 | 7570 | 0.30 | 2.9 | 7.0 | 0.5 | 9.0 | 48.0 | | WYs 86-95 (wet) | 35 | 230 | 2040 | 4850 | 0.10 | 1.7 | 4.7 | 1.0 | 5.0 | 34.0 | | WY 96 | 12 | 758 | 2260 | 5280 | 0.50 | 1.9 | 8.4 | 0.6 | 2.3 | 15.6 | | Mud Slough (N) @ San Luis Drain | 000 | 616 | 2220 | 10000 | 0.01 | | | | | | | WYs 86-95 | 288 | 616 | 3320 | 10900 | 0.06 | 2.8 | 7.9 | <0.4 | 7.8 | 59.0 | | WYs 86-95 (critical) | 340 | 660 | 3510 | 10860 | 0.20 | 3.1 | 7.9 | 0.4 | 9.4 | 50.0 | | WYs 86-95 (wet) | 114 | 616 | 2250 | 7250 | 0.27 | 2.0 | 6.4 | 0.4 | 4.1 | 59.0 | | WY 96 | 50 | 588 | 1900 | 5530 | 0.45 | 1.5 | 8.7 | <0.4 | 1.4 | 11.8 | | WY 97 | 46 | 1150 | 2870 | 4930 | 1.1 | 4.1 | 6.8 | 5.0 | 30.7 | 79.6 | | Los Banos Creek @ Highway 140 | | | | | | | | | | | | WYs 86-95 | 124 | 641 | 2030 | 7450 | 0.30 | 1.6 | 6.6 | <0.4 | 2.1 | 30.0 | | WYs 86-95 (critical) | 98 | 669 | 2140 | 7450 | 0.30 | 1.6 | 6.6 | 0.3 | 2.3 | 30.0 | | WYs 86-95 (wet) | 25 | 641 | 1000 | 3600 | 0.33 | 1.3 | 2.9 | <0.4 | 1.0 | 2.0 | | WY 96 | 3 | 509 | 1260 | 3350 | 0.60 | 1.5 | 3.0 | <0.4 | 0.6 | 1.2 | | Salt Slough @ Lander Ave. | | | | | | | | | | | | WYs 86-95 | 472 | 780 | 2220 | 4050 | 0.30 | 2.1 | 5.0 | 1.0 | 15.0 | 44.0 | | WYs 86-95 (critical) | 351 | 1020 | 2230 | 4050 | 0.30 | 2.0 | 4.7 | 0.6 | 14.6 | 44.0 | | WYs 86-95 (wet) | 115 | 780 | 2240 | 3970 | 0.43 | 2.2 | 5.0 | 1.0 | 16.0 | 42.0 | | WY 96 | 49 | 1010 | 2010 | 3000 | 0.47 | 2.0 | 3.5 | 1.0 | 16.0 | 33.5 | | WY 97 | 48 | 922 | 1370 | 2000 | 0.40 | 0.77 | 1.8 | 0.5 | 1.0 | 3.4 | | Inflow to San Luis Drain @ Check 17 | | | | | | | | | | | | WY 97 | 48 | 2620 | 4460 | 5600 | 4.2 | 7.3 | 9.0 | 17.9 | 65.9 | 108.0 | | San Luis Drain @ Terminus | | | | | | | | | | | | WY 97 | 48 | 2720 | 4270 | 5460 | 4.4 | 6.8 | 8.4 | 17.0 | 59.3 | 107.0 | | Mud Slough (N) upstream of SLD | | | | | | | | | | | | WY 97 | 48 | 744 | 1390 | 2960 | 0.56 | 1.2 | 2.9 | <0.4 | 0.8 | 1.7 | Table 12 continued: | | | | EC (umhos/cm) | | В | oron (mg/ | L) | Selenium (ug/L) | | | | |------------------------------|-------|-------|---------------|------|------|-----------|------|-----------------|------|------|------| | Site | | Count | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | | Autosampler Data (1) | Camp 13 Slough | | | | | | | | | | | | | | WY 97 | * | 122 | 1030 | 4630 | 0.34 | 3.8 | 7.7 | <0.4 | 12.4 | 33.0 | | Agatha Canal | | | | | | | | | | | | | | WY 97 | † | 116 | 225 | 809 | 0.37 | 0.62 | 1.0 | 0.5 | 1.7 | 6.8 | | Panoche Drain | | | | | | | | | | | | | | WY 96 | 85 | 3050 | 4530 | 5580 | 3.4 | 7.0 | 9.2 | 23.4 | 79.9 | 149 | | | WY 97 | 29 | 3830 | 4750 | 5320 | | _ | _ | 35.0 | 72.8 | 116 | | Firebaugh (Main) Drain | | | | | | | | | | | | | | WY 96 | 82 | 1830 | 3190 | 5520 | 2.1 | 3.8 | 7.6 | 25.2 | 59.7 | 136 | | | WY 97 | 25 | 2290 | 4110 | 5550 | | - | _ | 28.8 | 72.7 | 125 | | Mud Slough (N) @ SLD | | | | | | | | | | | • | | | WY 96 | 79 | 610 | 1880 | 5150 | 0.45 | 1.4 | 5.6 | 0.5 | 1.7 | 19.4 | | | WY 97 | 42 | 1170 | 2130 | 3760 | 1.3 | 2.5 | 6.2 | 4.5 | 17.1 | 50.6 | | Salt Slough at Lander Avenue | | | | | | | | | | | | | | WY 96 | 95 | 886 | 2020 | 3170 | 0.47 | 2.0 | 3.0 | 1.2 | 16.0 | 37.8 | | | WY 97 | 43 | 960 | 1440 | 2070 | 0.47 | 1.0 | 1.9 | 0.5 | 1.3 | 6.3 | | San Luis Drain @ Terminus | | | | | | | | | | | | | | WY 97 | 344 | 2620 | 4390 | 5880 | 4.1 | 7.0 | 9.3 | 15.2 | 62.4 | 116 | | | | | | | | | | | | | | Count = the minimum number of analyses out of the three constituents Water year type is based on the San Joaquin 60-20-20 River Index as follows: Critical Water Year: Runoff < 2.1 million ac-ft (WYS 87-92 and 94) Wet Water Year: Runoff > 3.81 million ac-ft (WYs 86, 93, 95, 96, and 97) ^{(1) =} All autosamplers except at the San Luis Drain site were removed by April 1997. The San Luis Drain sampler was installed in September 1996. The Camp 13 and Agatha samplers were operated intermittently between January and March 1997. ^{* = 75} EC, 20 selenium and 8 boron analyses were conducted $[\]dagger$ = 67 EC, 9 selenium and 4 boron analyses were conducted The Almond Drive Drain, as in previous years, contained low levels of the constituents of concern, as did Salt Slough Ditch at Hereford Road. These sites were sampled on a quarterly schedule and normally carry either surface tailwater or supply water. #### <u>Internal Flow Monitoring Sites</u> Four internal flow sites were monitored in WY 96: Santa Fe Canal at Henry Miller Road, San Luis Canal at Henry Miller Road, and Porter-Blake Bypass on a monthly basis; and CCID Main at Russell on a quarterly basis. These channels can carry supply water for both agriculture lands and wetland habitat, as well as transport agricultural tailwater and subsurface drainage. During Water Year 1996, EC in these water bodies ranged from 56 μ mhos/cm to 3800 μ mhos/cm, while boron ranged from <0.05 mg/L to 5.3 mg/L (Table 12). Selenium concentration ranged from <0.4 μ g/L to 66.3 μ g/L. The lowest concentrations occurred in the CCID Main at Russell which primarily carries supply water, while the highest concentrations occurred in the Porter-Blake Bypass, which served as a conduit when subsurface agricultural drainage was discharged into Salt Slough. When compared to the previous ten years of available data, the Santa Fe and San Luis sites showed significant decreases for the constituents of concern, CCID Main remained at approximately the same level, and Porter-Blake concentrations increased. #### **Outflow Monitoring Stations** Four outflow stations were sampled during Water Year 1996. Salt Slough at Lander Avenue and Mud Slough (north) downstream of the San Luis Drain were monitored on a weekly basis. Mud Slough (north) at Newman Gun Club was sampled on a monthly basis, and Los Banos Creek at Highway 140 was sampled on a monthly basis, with boron and selenium analyses only conducted on a quarterly basis. During Water Year 1996, the majority of subsurface drainage flowed through Salt Slough prior to discharge into the San Joaquin River. EC, boron, and selenium concentrations ranged from 1010 to 3000 μ mhos/cm, 0.47 to 9.3 mg/L, and 1.0 to 33.5 μ g/L, respectively (Table 12). The highest concentrations occurred on 5 May 1996, while lowest occurred the first two weeks in November. Mud Slough (north) at the San Luis Drain and Mud Slough (north) at Newman Gun Club had lower concentrations of boron and selenium than Salt Slough, but higher overall ECs. A short term spike in selenium concentrations occurred in Mud Slough (north) downstream of the San Luis Drain between 14 and 17 April 1996, during the dewatering of groundwater from the drain in preparation for the Grassland Bypass Project. During those four days, selenium concentrations in Mud Slough (north) ranged from 10 μ g/L to 21 μ g/L. Once the discharge ceased, selenium concentration in Mud Slough (north) dropped back below 2 ug/L. Los Banos Creek contained consistently low concentrations of EC, boron and selenium, ranging from 509 to 3350 µmhos/cm, 0.60 to 3.0 mg/L, and <0.4 to 1.2 µg/L, respectively. #### Composite Samples Four autosamplers were in place during Water Year 1996, collecting 4-day composite samples at Panoche Drain, Firebaugh (Main) Drain, Mud Slough (north) and Salt Slough (Figures 3 and 4). Autosamplers were also installed intermittently on Camp 13 Slough and the Agatha Canal when flooding made the site inaccessible (Data presented in Appendix C). The 4-day composite information collected at the Panoche and Firebaugh (Main) Drain, demonstrates not only the overall elevated constituent concentrations at these sites (minimum EC, boron, and selenium concentrations above 2,000 μ mhos/cm, 2.5 mg/L, and 25 μ g/L,
respectively), but also the variability of the concentrations over the season and even within a 4-day period. Even with the few data gaps that occurred during flood events when the sites could not be accessed for maintenance, the composite record provides a more continuous data base than the weekly grab samples for water year 1996. Figure 3. Electrical Conductivity, Boron and Selenium Concentrations in Panoche and Firebaugh Drains (Sigma Data): Water Year 1996 Figure 4. Electrical Conductivity, Boron and Selenium Concentrations Mud Slough (north) and Salt Slough (Sigma Data): Water Year 1996 The composite samplers installed at both Mud Slough (north) and Salt Slough, also provide an almost continuous record of EC, boron and selenium concentrations at the two sites. The Mud Slough (north) sampler was removed for a short period between the end of February and early March, when high flows in the slough threatened to submerge the device which was attached to the bridge. EC and boron concentrations in the two sloughs are comparable with rapid concentration shifts over 4-day periods. Selenium concentrations in Salt Slough remain quite elevated over Mud Slough (north) concentrations during the entire water year except for a peak evident in Mud Slough (north) during mid-April which corresponds to the dewatering of groundwater from the San Luis Drain. #### Water Year 1997 With the advent of the Grassland Bypass on 26 September 1996, the focus of the monitoring program shifted from general evaluation of impacts of agricultural drainage on inflow, internal flow and outflow water bodies within the Grassland Watershed, to impacts from consolidating discharge of subsurface drainage into Mud Slough (north) and resulting water quality in wetland water supply channels. Three new monitoring sites were added in Water Year 1997, due to the opening of the Grassland Bypass Project. One was the inflow to the San Luis Drain which represents the water quality in the Grasslands Bypass. The samples at this site were collected by Panoche Water District on a weekly schedule at a point on the San Luis Drain downstream of the Grassland Bypass inflow. The second addition was the San Luis Drain at its terminus prior to discharge into Mud Slough (north). The final addition, Mud Slough (north) upstream of the San Luis Drain, was added to furnish background data for the Mud Slough (north) site prior to the inflow from the San Luis Drain. Several of the inflow sites monitored during Water Year 1996, were discontinued in Water Year 1997. The exceptions were Camp 13 Slough and Agatha Canal. Grab samples at these sites were collected by Panoche Water District. The frequency of sampling was increased from monthly to weekly on 3 November 1996, and automated composite samples were collected from 10 January 1997 to 25 March 1997 due to limited direct access. Two internal sites were continued in WY 97: Santa Fe and San Luis Canals at Henry Miller Road. Weekly sampling by Panoche Water District staff began in November 1996. No data is available for January 1997. Both the Salt Slough at Lander Avenue and the Mud Slough (north) at the San Luis Drain sites were continued during Water Year 1997. The outflow sites on Los Banos Creek and Mud Slough (north) at Newman Gun Club were discontinued. Electrical conductivity, boron, and selenium data have been summarized in Tables 11 and 12. Remaining water quality information collected during Water Year 1997, is listed in Appendix B. #### San Luis Drain and Mud Slough (north) Grab samples were collected both from the inflow to and discharge from the San Luis Drain and also from Mud Slough (north) upstream and downstream of the discharge from the San Luis Drain. In addition to EC, boron, and total selenium, dissolved selenium and total suspended solids were analyzed at both San Luis Drain sites. Concentrations at the inflow to and discharge from the San Luis Drain were similar (Figure 5). The discharge's impact on Mud Slough (north) was pronounced (Figure 6), particularly after February 1997. Elevated background concentrations of EC and boron in Mud Slough (north) upstream of the San Luis Drain discharge (reaching 2960 μ mhos/cm and 2.9 mg/L, respectively) are further exacerbated by the drainage discharge, with EC and boron concentrations reaching 4930 μ mhos/cm and 6.8 mg/L, respectively. The greatest impact on Mud Slough from the San Luis Drain discharge was on selenium concentrations. Selenium concentrations in Mud Slough (north) upstream of the discharge were below Figure 5. Electrical Conductivity, Boron and Selenium Concentrations in the Inflow to and Discharge from the San Luis Drain (Grab Data): Water Year 1997. Figure 6. Electrical Conductivity, Boron and Selenium Concentrations in Mud Slough (north) Upstream and Downstream of the Discharge from the San Luis Drain (Grab Data): Water Year 1997. 1.7 μ g/L; downstream of the discharge, the mean selenium concentration was 30.7 μ g/L with a maximum of 79.6 μ g/L. A comparison of total versus dissolved selenium concentrations at the two San Luis Drain sites is presented in Table 13. Concentrations of each sample pair fall within the analytical criteria of acceptable split samples, indicating that selenium in the drain is in the dissolved (aqueous) form. Total suspended sediment was analysed on a weekly basis in the inflow to and discharge from the San Luis Drain. Summary results from the analyses are presented in Table 14 and Figure 7. Complete analytical results are listed in Appendix B. Total suspended sediment concentrations were consistently higher in the inflow to the drain than in the discharge from the drain, although actual weekly concentrations varied widely. Median concentrations in the inflow and discharge were 96 mg/L and 25 mg/L, respectively. #### Wetland Water Supply Channels and Salt Slough Weekly grab samples were collected at: Camp 13 Ditch and the Agatha Canal, major supply canals for wetlands within Grassland Water District; the San Luis Canal and Santa Fe Canal at Henry Miller Road, two internal distribution canals for wetland habitat; and at Salt Slough, a tributary of the San Joaquin River. During a brief period, between 27 January and 5 February 1997, subsurface agricultural drainage was diverted into these channels in response to a flood event. Data for this time period have been presented and discussed in a previous report (USBR, 1997) and are not included in the discussion below. EC, boron and selenium data for Camp 13 Slough and Agatha Canal are presented in Figure 8. Concentrations were consistently higher at Camp 13 than at the Agatha, except for an EC spike recorded on 4 February 1997, during the tail end of the flood event. EC and boron levels reached their maximum in early April, reaching 3760 μ mhos/cm and 7.1 mg/L, respectively, at Camp 13. Selenium showed a peak of 13.5 μ g/L on 7 May 1997, at Camp 13, while the median selenium level was 1.6 μ g/L. On a number of occasions, Camp 13 Slough exceeded 2.0 μ g/L selenium, while the Agatha Canal reached a maximum of 3.4 μ g/L and only exceeded 2.0 μ g/L on five separate occasions. Concentrations in the internal supply channels, the San Luis and Santa Fe Canals, fluctuated during Water Year 1997, as depicted in Figure 9. Aside from the storm event, the highest EC and boron concentrations occurred between the end of February and April, a primary period of wetland releases and pre-irrigation. Selenium levels did not demonstrate the same spike; however, concentrations remained above $2.0 \,\mu\text{g/L}$ for the majority of samples collected from February through September 1997. The cause of the elevated selenium levels for that time period is not readily apparent but may be due to a number of different factors. Some potential sources include elevated selenium levels in supply water, releases from the DPA (both in response to flood events and seepage from gates and canals), inflows from other sources such as the Rice Drain and Almond Drive Drain, and local sources such as groundwater seepage and surface return flows. To evaluate the potential for elevated selenium concentrations in irrigation supply water, all available selenium data since October 1996, for the Delta Mendota Canal, Mendota Pool, and the Central California Irrigation District (CCID) Main Canal, major water supplies for the Grassland Watershed, were compiled and listed in Table 15. Although the data set is extremely limited, on a number of occasions, these sources of supply water have exceeded 2.0 µg/L selenium. During March and early April, 1997, elevated constituent concentrations were noted at Camp 13 Slough. Regional Board staff observation and discussion with Grassland Water District staff confirmed that water from the Main Drain, which contained drainage from adjacent flooded farm land, was being diverted into Camp 13 ditch during this time period. This water was not from farmland participating in the Grassland Bypass Project and staff from the water district assumed that the flood water was of good quality. Review of data collected using an automated sampler which was in place at Camp 13 Slough, until 25 March 1997, indicated that the diverted water contained elevated levels of all three constituents Table 13. Total vs Dissolved Selenium Concentrations at the Inflow to and Discharge from the San Luis Drain. | | Sele | | nium Conce | ntration (µg | /L) | |---------|----------|-------------|-------------|--------------|-----------| | | Infl | | w | Outf | low | | Date | Total | Date | Dissolved | Total | Dissolved | | 9/26/96 | 44.8 | 9/26/96 | 46.0L | 20.2 | 19.5L | | 10/3/96 | 5 77.4 | 10/3/96 | 79.1L | 66.8 | 65.8L | | 10/18/9 | 6 38.6 | 10/18/96 | 37.5L | 43.0 | 41.8L | | 10/25/9 | 6 51.4 | 10/25/96 | 49.5 | 79.8 | 77.2 | | 41 | III | 10/29/96 | 61.6 | 54.6 | 54.8 | | 11/8/96 | 61.3 | 11/8/96 | 61.1 | 43.2 | 42.1 | | 11/19/9 | 6 56.2 | 11/19/96 | 57.0 | 75.8 |
75.2 | | II | 11 | 11/26/96 | 39.6 | 58.9 | 56.4 | | 11 | 11 | 12/5/96 | 69.9L | 30.1 | 31.0 | | 11 | l I | 12/10/96 | | 38.9 | 39.0 | | H | | 12/20/96 | 80.2 | 49.8 | 49.0 | | II | H | 12/27/96 | 91.9 | 60.8 | 61.6 | | 1/9/97 | 78.7 | | 76.6 | 33.3 | 34.2 | | 1/21/97 | ′ ∥ 88.2 | 1/21/97 | 84.8 | 57.0 | 56.4 | | II | 72.0 | 2/4/97 | 70.5 | 63.6 | 61.8 | | | li . | 2/11/97 | 96.6 | 78.4 | 78.4 | | 11 | ll . | 2/18/97 | 78.6 | 79.7 | 83.2 | | 11 | ' ∥ 90.3 | 2/28/97 | 86.4 | 77.6 | 73.4 | | 3/5/97 | 88.4 | | 91.1 | 89.3 | 87.1 | | | 11 | 3/12/97 | 77.2 | | | | 11 | 11 | 3/13/97 | | 91.8 | 84.4 | | 13 | 11 | 3/19/97 | 71.1 | | | | 10 | | 3/20/97 | | 70.2 | 70.4 | | II | 11 | 3/26/97 | 61.0 | | • | | 11 | 11 | 3/27/97 | | 78.9 | 78.1 | | 4/2/97 | 93.0 | | 95.8 | | | | 4/3/97 | | | | 96.2 | 93.7 | | 4/9/97 | 108 | | 117 | | | | 11 | II . | 4/10/97 | | 105 | 102 | | | 11 -2. | 4/16/97 | 104 | | | | II. | H | 4/17/97 | | 107 | 110 | | | 11 -0- | 4/23/97 | 97.6 | | | | H | II: | 4/24/97 | | 95.2 | 93.6 | | 5/1/97 | 96.8 | | 96.6 | | | | 5/2/97 | | | 70 0 | 72.6 | 73.7 | | 5/7/97 | 73.6 | | 73.0 | | | | 5/8/97 | | 5/8/97 | | 80.3 | 78.3 | | | Selenium Concentration (µg/L) | | | | | | | | | |---------|-------------------------------|-----------|-------|-----------|--|--|--|--|--| | | Inflo | w | Out | low | | | | | | | Date | Total | Dissolved | Total | Dissolved | | | | | | | 5/14/97 | 61.6 | 57.6 | | | | | | | | | 5/15/97 | | | 75.2 | 75.7 | | | | | | | 5/21/97 | 65.0 | 63.6 | | | | | | | | | 5/23/97 | | | 64.2 | 64.6 | | | | | | | 5/28/97 | 58.5 | 60.6 | | | | | | | | | 5/29/97 | | | 62.3 | 60.9 | | | | | | | 6/4/97 | 52.1 | 50.6 | | | | | | | | | 6/5/97 | | | 72.8 | 70.4 | | | | | | | 6/11/97 | 81.0 | 78.9 | | | | | | | | | 6/12/97 | | | 54.6 | 55.0 | | | | | | | 6/18/97 | 67.5 | 63.1 | | | | | | | | | 6/25/97 | 61.5 | 60.5 | 73.3 | 73.6 | | | | | | | 7/2/97 | 65.8 | 64.1 | 59.9 | 59.8 | | | | | | | 7/9/97 | 40.6 | 40.5 | | | | | | | | | 7/10/97 | | | 34.9 | 35.0 | | | | | | | 7/16/97 | 54.5 | 53.0 | | | | | | | | | 7/17/97 | | | 37.0 | 37.0 | | | | | | | 7/23/97 | 40.5 | 43.5 | | | | | | | | | 7/24/97 | | : | 41.8 | 39.5 | | | | | | | 7/30/97 | 45.5 | 44.6 | | | | | | | | | 7/31/97 | | | 43.7 | 42.4 | | | | | | | 8/6/97 | 53.8 | 50.4 | | | | | | | | | 8/7/97 | ••• | | 27.9 | 27.7 | | | | | | | 8/13/97 | 38.4 | 39 | | | | | | | | | 8/14/97 | | | 42.3 | 41.7 | | | | | | | 8/20/97 | 30.8 | 30.4 | | | | | | | | | 8/21/97 | | | 31.2 | 31.0 | | | | | | | 8/27/97 | 55.4 | 53.7 | 48.9 | 47.2 | | | | | | | 9/3/97 | 52.1 | 49.4 | | | | | | | | | 9/5/97 | 450 | 4.7.7 | 23.4 | 23.3 | | | | | | | 9/10/97 | 17.9 | 16.6 | 45.0 | 4.5.4 | | | | | | | 9/12/97 | 00.0 | 01.0 | 17.0 | 16.4 | | | | | | | 9/17/97 | 22.8 | 21.8 | 45.4 | 1.7.0 | | | | | | | 9/18/97 | 20.0 | 20.0 | 17.1 | 17.0 | | | | | | | 9/24/97 | 29.0 | 28.0 | 100 | 104 | | | | | | | 9/25/97 | | ļ | 18.3 | 18.4 | | | | | | | 1 | | l) | | | | | | | | L = Lab filtered Table 14. Summarized Total Suspended Sediment Data for the Inflow to and Discharge from the San Luis Drain: Water Year 1997 | | | Tota | 1 Suspended S | Sediment (mg/ | L) | | |---|----------|---------|---------------|---------------|----------|----------| | Location | Count | Min | Max | Mean | Geo Mean | Median | | Inflow to San Luis Drain
Discharge from San Luis Drain | 43
44 | 38
8 | 190
140 | 100
28 | 92
23 | 96
25 | Figure 7. Total Suspended Sediment Concentration in the Inflow to and Discharge from the San Luis Drain: Water Year 1997. Figure 8. Electrical Conductivity, Boron and Selenium Concentrations in Camp 13 Slough and Agatha Canal (Grab Data): Water Year 1997. Figure 9. Electrical Conductivity, Boron and Selenium Concentrations in the San Luis Canal and Santa Fe Canal (Grab Data): Water Year 1997. Table 15. Selenium Concentrations in Supply Water to the Grassland Watershed: October 1996 through September 1997.* | | S | elenium Concentration (µg/I | L) | |----------|---------------------|-----------------------------|------------------------| | | Delta Mendota Canal | Mendota Pool | CCID Main Canal @ | | Date | MP 110.12 | at Mowry Bridge | Head of San Luis Canal | | 10/2/96 | <1 | | _ | | 10/14/96 | | <2 | _ | | 11/13/96 | <1 | | | | 11/15/96 | | 2.9 | _ | | 12/18/96 | | 2.4 | _ | | 1/8/97 | 3 | | _ | | 1/15/97 | | <2 | <2 | | 2/11/97 | 18 | | | | 2/18/97 | | <2 | | | 3/12/97 | 13 | | | | 3/13/97 | | <2 | | | 4/2/97 | 2 | _ | | | 4/16/97 | . | 4 | | | 5/9/97 | <2 | | | | 5/15/97 | | 4.8 | - | | 6/13/97 | <2 | | | | 7/9/97 | <2 | No. | | | 7/11/97 | | 2.2 | 4 | | 8/14/97 | <2 | | ******** | | 9/16/97 | 4 | | | ^{* =} Data provided by Summers Engineering and the Central California Irrigation District based on internal monitoring and sampling conducted by the U.S. Bureau of Reclamation. of concern. Electrical conductivities reached 4600 μ mhos/cm while selenium concentrations peaked at 21.2 μ g/L. The automated data confirms the peaks seen during the program's weekly grab samples (Figure 10). The diversion of the ponded water ceased on 28 March 1997. Additional periods of elevated concentrations also occurred between April and September 1997. These elevated concentrations corresponded to a period of very low flow in Camp 13 Slough. Little, if any supply water was being delivered and the majority of flow was from leaks in the gates separating the slough from the main supply canal and from major drains. Reports from the San Luis Delta Mendota Water Authority (SLDMWA, 1997) indicate that between 5 and 10 gpm will leak from the Main Drain into Camp 13 Slough through the closed gates. Another potential selenium source to the internal wetland supply canals includes elevated concentrations in the Rice Drain, which receives drainage from lands in the eastern portion of the watershed, and the Almond Drive Drain, which receives drainage from lands in the western portion of the watershed. Although these drains were not monitored during Water Year 1997, historical data indicates that both drains have contained selenium concentrations in excess of 2.0 µg/L on many occasions (Figure 11). Sources of drainage into these water bodies needs to be determined. Other factors such as elevated concentrations in groundwater seepage and in surface drainage may also impact the quality of water in the internal canals. Further review of all factors related to the elevated selenium levels in the internal canals within the Grassland Watershed and possible source flows, is necessary. Concentrations of electrical conductivity, boron and selenium have all decreased dramatically in Salt Slough as compared to values recorded prior to the operation of the Grassland Bypass Project (Steensen et al., 1998). Concentrations of these three constituents in Salt Slough during Water Year 1997, are depicted in Figure 12. Electrical conductivity and boron remained below 2,000 μ mhos/cm and 1.8 mg/L, respectively, throughout the water year. Selenium concentration remained below 2.0 μ g/L except for one spike recorded in the first part of February 1997, during the flood event, when concentrations reached 3.4 μ g/L. # **Daily Composite Samples** Daily composite samples were collected at the discharge from the San Luis Drain. Some inconsistencies in the quality control samples for the discharge were noted for the time period of 10 through 21 January 1997. Although the information collected was graphed, the data were not used in the summary calculations presented in Tables 11 and 12. Daily electrical conductivity (EC), boron and selenium results are presented in Figure 13 along with grab sample data. At the San Luis Drain discharge, EC and boron concentrations can vary widely on a daily basis. Daily EC values vary up to 1,000 μ mhos/cm in a day, while boron concentrations vary up to 2 mg/L per day. Some seasonality is evident with concentrations peaking between February and April and tapering off from June through September. The results obtained from the grab and autosampler show similar means and medians of 4390 μ mhos/cm and 4420 μ mhos/cm, respectively for EC and 7.0 and 7.2 mg/l, respectively for boron (Tables 11 and 12). Selenium showed greater seasonal fluctuations than EC or boron, with concentrations peaking in April at $116~\mu g/L$ and dropping off to $15.2~\mu g/L$ in September. Daily concentration fluctuations could also be high, with a $40~\mu g/L$ shift occurring between 2 and 3 October 1996. Although weekly grab samples appear to document the seasonal trends and shifting concentrations, they are unable to detect the potentially large changes in daily concentrations. ## DISCUSSION ## Comparison of Water Year 1996 with Water Year 1997 When the Grassland Bypass became operational at the end of September 1997, it effectively consolidated agricultural subsurface drainage from the DPA into a single channel for discharge into the Figure 10. Corroboration of Grab Sample Data by Use of Automated Collection (Sigma) Sampler at Camp 13 Slough: Water Year 1997. Figure 11. Selenium Concentrations in Almond Drive and Rice Drain: May 1985 to November 1996* ^{*} Sampled primarily on a monthly basis until 1995 1991: special study (frequent sampling) 1995 and 1996: sampled quarterly Figure 12. Electrical Conductivity, Boron and Selenium Concentrations in Salt Slough (Grab Data): Water Year 1997 Figure 13. Comparison of Selenium, Boron and Electrical Conductivity at the San Luis Drain Using Grab Sample Data and Autosampler (Sigma) Data: Water Year 1997. final nine miles of Mud Slough (north). This consolidation removed the subsurface drainage from approximately 90 miles of internal wetland water supply channels and from Salt Slough. Figure 14 depicts the changes in EC, boron, and selenium concentrations in
Mud Slough (north) and Salt Slough for the period prior to the Bypass (Water Year 1996) and the first year following the Bypass operation (Water Year 1997). Both EC and boron concentration declined in Salt Slough and increased in Mud Slough (north) once the Bypass began operation. The most dramatic change, however, occurred with selenium concentrations. Removing the agricultural subsurface drainage from Salt Slough, reduced the selenium concentration to below 2.0 μ g/L during Water Year 1997 as opposed to a range of 1.0 to 33.5 μ g/L during Water Year 1996. A corresponding increase was seen in Mud Slough (north) with selenium concentrations ranging from 5.0 to 79.6 μ g/L during Water Year 1997. When subsurface agricultural drainage is present, the higher overall selenium concentrations observed in Mud Slough (north), as compared to Salt Slough, is due to limited dilution potential. Mud Slough (north) has a lower baseline flow and therefore provides less dilution for agricultural subsurface drainage than Salt Slough. Concentrations in the wetland water supply channels was more variable. Overall concentrations in Camp 13 Slough and the Agatha Canal decreased dramatically after the Bypass began operation, however, a number of concentration spikes were apparent throughout Water Year 1997 (Figure 15). Potential reasons for the concentration spikes include elevated selenium levels in supply water, releases from the DPA (seepage and flood flows), inflows from other sources such as the Rice Drain and Almond Drive Drain, and other internal sources such as groundwater seepage and surface return flows. These potential sources were discussed in more detail in the section on wetland water supply channels and Salt Slough under the results for Water Year 1997. Concentrations in the San Luis Canal and Santa Fe Canal do not appear to have changed, with similar values recorded both prior to and after Bypass operation (Figure 16). Most subsurface agricultural drainage was diverted out of these canals and into Salt Slough through the Porter-Blake Bypass, upstream of the sampling locations, during water year 1996. Only when subsurface agricultural drainage was diverted to Mud Slough (north) or continued downstream in the San Luis Canal to the City Ditch diversion to Salt Slough, would the drainage be measured in these canals at these sampling locations. By water year 1997, the majority of subsurface drainage had been consolidated into the Grassland Bypass and lower portion of the San Luis Drain, and did not reach the two canals except during flood flows. # Comparison to Applicable Water Quality Objectives In October 1988, the Regional Board adopted water quality objectives for boron, molybdenum and selenium for Mud Slough (north), Salt Slough and water used to maintain wetland habitat. In May 1996, the Regional Board adopted revised selenium water quality objectives for the two sloughs and for wetland water supply channels, as well as a compliance time schedule for Mud Slough (north). Water quality objectives which applied during each water year are listed in Table 16. The selenium compliance time schedule which applies to Mud Slough (north), does not require full compliance with the selenium objective until 1 October 2010. No water quality objectives have been adopted for the San Luis Drain. Tables 17 and 18 list the exceedances of boron and selenium water quality objectives, respectively, for both Water Year 1996 and 1997. All potential selenium exceedances have been shown, whether or not they may be subject to the compliance time schedule. #### Boron The boron water quality objective remained unchanged for both water years and only applied to two water bodies, Mud Slough (north) and Salt Slough. In addition, the objective (2.0 mg/L) is applied as a monthly mean for a set time period: 15 March through 15 September. A maximum objective of 5.8 mg/L boron applies year round. Figure 14. Comparison of Selenium, Boron and Electrical Conductivity at Salt Slough and Mud Slough (North) Downstream of the San Luis Drain: Water Years 1996 and 1997. Figure 15. Comparison of Selenium, Boron and Electrical Conductivity at Agatha Canal and Camp 13 Slough: Water Years 1996 and 1997. Figure 16. Comparison of Selenium, Boron and Electrical Conductivity at San Luis Canal and Santa Fe Canal at Henry Miller Road: Water Years 1996 and 1997. Table 16. Boron, Selenium and Molybdenum Water Quality Objectives for Water Bodies Within the Grassland Watershed. Water Years 1996 and 1997. | | Boron (mg/ | L) | Selenium (µg/l | <u>(</u>) | Molybdenum (µ | ıg/L) | |--|---|------------|--------------------------------------|------------|--|----------| | Water Body | Continuous | Maximum | Continuous | Maximum | Continuous | Maximum | | Mud Slough (north)
WY 1996
WY 1997 | 2.0 (monthly mean)† 2.0 (monthly mean)† | 5.8
5.8 | 10 (monthly mean) 5 (4-day average)* | 26
20 | 19 (monthly mean) 19 (monthly mean) | 50
50 | | Salt Slough
WY 1996
WY 1997 | 2.0 (monthly mean)† 2.0 (monthly mean)† | 5.8
5.8 | 10 (monthly mean) 2 (monthly mean) | 26
20 | 19 (monthly mean)
19 (monthly mean) | 50
50 | | Wetland Water Supply
WY 1996
WY 1997 | Channels — — — — | | 2 (monthly mean)†† 2 (monthly mean) | <u> </u> | | <u> </u> | ^{† =} The water quality objective only applies from 15 March through 15 September ^{* =} Compliance time schedule adopted and in effect until October 2010 ^{†† =} as measured in water used for wetland habitat maintenance Table 17. Boron Water Quality Objective Exceedances in the Grassland Watershed: Water Years 1996 and 1997. | Station | | | | | | | M | onth | | | | | | Monthly | |---------|--|------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|---------| | ID | Description | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Ju1 | Aug | Sep | wqo | | Water Y | ear 1996 | | | | | | | | | | | | | | | MER542 | Mud Slough (N) downstream of the SLD | a | a | a | a | a | | | | | | | | 2.0 | | MER531 | Salt Slough at Lander Ave. | a | a | a | a | a | | | | | | | | 2.0 | | | Mud Slough (N) at SLD autosampler | a | a | a | a | a | | | | | | | | 2.0 | | MER531 | Salt Slough at Lander Avenue autosampler | _ a_ | a | a | a | a | | | | | | | | 2.0 | | Water Y | ear 1997 | | | | | | | | | | | | | | | MER536 | Mud Slough (N) upstrm of the Drainage Discharge | a | a | a | a | a | | | | | | | | 2.0 | | MER542 | Mud Slough (N) dwnstrm of the Drainage Discharge | a | a | a | a | a | | | | | | | | 2.0 | | MER531 | Salt Slough at Lander Avenue | a | a | a | a | a | | | | | | | | 2.0 | = water quality objective exceedance a = objective only applies 15 March through 15 September WQO = water quality objective in mg/L Table 18. Selenium Water Quality Objective Exceedances in the Grassland Watershed: Water Years 1996 and 1997. | Station | | | | | | | Mo | onth | | | | | | Monthly | |---------|--|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|---------| | ID | Description | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | wqo | | Water Y | | | | | | | | | | | | | | | | | Camp 13 Slough | | | b | ь | b | b | b | ь | b | b | ь | | 2 | | | Agatha Canal | | | b | ь | b | b | b | b | b | b | ь | | 2 | | | San Luis Canal at Henry Miller Road | | | b | b | b | b | b | b | ь | b | b | | 2 | | | Santa Fe Canal at Henry Miller Road | | | b | b | b | b | b | b | ь | b | b | | 2 | | | Mud Slough (N) at Newman Gun Club | | | | | | | | | | | | | 10 | | | Mud Slough (N) at San Luis Drain | | | | | | | | | | | | | 10 | | MER531 | Salt Slough at Lander Avenue | | | | | | | | | | | | | 10 | | MER542 | Mud Slough (N) at SLD autosampler | | | | | | | | | | | | | 10 | | MER531 | Salt Slough at Lander Avenue autosampler | | | | | | | | | | | | | 10 | | Water Y | | | | | | | | | | | | | | | | MER505 | Camp 13 Ditch | | | | ND | | | | | | | | | 2 | | MER506 | Agatha Canal | | | | ND | ND | | | | | | | | 2 | | MER543 | San Luis Canal at Henry Miller Road | ND | | | ND | | | | | | | | | 2 | | MER519 | Santa Fe Canal at Henry Miller Road | ND | | | ND | | | | | | | | | 2 | | MER551 | Mud Slough (N) upstrm of the Drainage Discharge | | | | | | | | | | | | | 5 | | MER542 | Mud Slough (N) dwnstrm of the Drainage Discharge | | | | | | | | | | | | | 5 | | MER531 | Salt Slough at Lander Avenue | | | | | | | | | | | | | 2 | = water quality objective exceedance ND = no data available WQO = water quality objective in μ g/L b = the 2 ug/L objective only applied to wetland water supply so applied to wetland floodup (Sept. through Nov.) Note that Table 17 is for discussion only as a compliance time schedule applies to the 5 μ g/L 4-day average Se water quality objective Beginning WY97, the 2 μ g/L objective applied to stations MER531, MER505, MER506, MER543, and MER519 Table 19. Monthly Molybdenum Concentrations and Water Quality Objective Exceedances in the Grassland Watershed: Water Years 1996 and 1997 | Station | | | | | Moly | bdenu | m Cor | centra | tion (ı | 1g/L) | | | | Monthly | |---------|--|-----|-----|-----|------|-------|-------|--------|---------|-------|-----|-----|-----|---------| | ID | Description | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Ju1 | Aug | Sep | WQO | | Water Y | ear 1996 | | | | | | | | | | | | | | | MER556 | Main (Firebaugh) Drain at Russell Ave. | 45 | | | 31 | | _ | 20 | | | 7 | | | na | | | Panoche Drain at O'Banion Gauge Station | 13 | | | 8 | | | 12 | | | 15 | | | na | | MER504 | Hamburg Drain near Camp 13 Slough | 7 | | | 7 | _ | _ | 5 | | _ | 4 | | _ | na | | MER502 | Charleston Drain at CCID Main Canal | 2 | | | 5 | | 1 | 6 | | _ | 5 | | | na | | | Mud Slough (N) downstream
of the SLD | 7 | | | 6 | _ | | 10 | | _ | 11 | | | 19 | | MER531 | Salt Slough at Lander Ave. | 6 | | _ | 9 | — | | 9 | İ | _ | 10 | | | 19 | | Water Y | ear 1997 | | | | | | | | | | | | | | | MER536 | Mud Slough (N) upstrm of the Drainage Discharge | 7 | | 3 | 3 | | 7 | 11 | 5 | 7 | 3 | 5 | 10 | 19 | | MER535 | San Luis Drain at the Terminus | 35 | 30 | 23 | 22 | 27 | 29 | 26 | 23 | 26 | 25 | 25 | 35 | na | | | Mud Slough (N) dwnstrm of the Drainage Discharge | 11 | 8 | 3 | 6 | 19 | 17 | 24 | 17 | 21 | 16 | 23 | 20 | 19 | | MER531 | Salt Slough at Lander Avenue | 4 | 4 | 7 | 7 | 7 | 7 | 10 | 6 | 9 | 5 | 5 | 9 | 19 | During Water Year 1996, the mean monthly boron water quality objective was exceeded during April and September in Mud Slough (north) based on weekly grab samples. However, when evaluated using 4-day composite data for the same site, monthly mean boron concentrations remained below the 2.0 mg/L objective. In contrast, the boron objective was exceeded continuously from April through July in Salt Slough, based on the weekly grab samples. Review of the 4-day composite information indicates that the objective was also exceeded in March 1996, but concentrations fell just below 2.0 mg/L in April. Maximum boron concentrations remained below 5.8 mg/L in both sloughs. During Water Year 1997, the mean monthly boron objective was exceeded in Mud Slough (north) both upstream and downstream of the San Luis Drain discharge. The exceedances upstream of the discharge may be due to a number of factors including localized elevated levels in groundwater seepage, releases from wetlands, and other surface drainage. Exceedances in the slough downstream of the discharge increased substantially over both background and previous year concentrations, with exceedances during each month that the water quality objective applied. Maximum boron concentrations in Mud Slough (north) downstream of the San Luis Drain discharge exceeded 5.8 mg/L on nine separate occasions between April and August 1997. Only one mean monthly boron exceedance was recorded in Salt Slough which may reflect the diversion of subsurface agricultural drainage out of that water body. This exceedance was related to the storm event previously discussed. All measured concentrations in Salt Slough remained below 5.8 mg/L during Water Year 1997. #### Selenium Selenium water quality objectives for water bodies within the Grassland Watershed changed between water years 1996 and 1997 with the adoption of the 1996 Basin Plan Amendment. During Water Year 1996, a 10 μ g/L monthly mean selenium objective applied to both Mud Slough (north) and Salt Slough, while a 2 μ g/L objective applied to water which was used to maintain wetland habitat. The new objectives, which were adopted in May 1996 and went into effect during Water Year 1997, included a 2 μ g/L monthly mean selenium objective for all wetland water supply channels (not just the supply water) and Salt Slough. A 5 μ g/L, 4-day average objective was adopted for Mud Slough (north) along with a compliance time schedule which requires that the objective be met by 1 October 2010. During Water Year 1996, the 2 $\mu g/L$ selenium objective applied primarily from September through November, the normal period of wetland floodup. Of the supply waters sampled, only Camp 13 exceeded the 2 $\mu g/L$ objective. The exceedances occurred during October and November and were likely due to the use of the channel to convey subsurface agricultural drainage through the Grassland Watershed. Most of the subsurface drainage was routed to Salt Slough during Water Year 1996, which resulted in continuous exceedances of the 10 $\mu g/L$ selenium objective in that water body from December through September. Available 4-day composite data for Salt Slough confirmed the exceedances. In contrast, Mud Slough (north) remained below the 10 $\mu g/L$ selenium objective throughout Water Year 1996. During Water Year 1997, the 2.0 µg/L monthly mean selenium water quality objective was exceeded repeatedly in the supply channels (Camp 13, Agatha, San Luis Canal and Santa Fe Canal), but not in Salt Slough. As discussed earlier, a number of factors may have led to these exceedances and each must be further evaluated to determine a means of meeting the water quality objective. Although subject to the adopted compliance time schedule, Mud Slough (north) was evaluated against the 5 µg/L, 4-day average selenium water quality objective. Mud Slough (north) downstream of the San Luis Drain Discharge continuously exceeded the objective in Water Year 1997, while there were no exceedances upstream of the discharge. #### Molybdenum Molybdenum analyses in water bodies within the Grassland Watershed were restricted to quarterly analyses in selected drains, Mud Slough (north) and Salt Slough during Water Year 1996. During Water Year 1997, molybdenum monitoring was focused on sites which would likely be influenced by the Grassland Bypass Project and included monthly analyses in Mud Slough (north) upstream and downstream of the San Luis Drain discharge, the San Luis Drain itself, and Salt Slough. Available data is presented in Table 19. During Water Year 1996, the monthly mean molybdenum objective (19 μ g/L) only applied to Mud Slough (north) and Salt Slough, and was not exceeded based on limited, quarterly grab samples. Although the objective did not apply to upstream water bodies, information collected from the four major discharge points for the Drainage Project Area indicated elevated molybdenum concentrations in the Main (Firebaugh) Drain. During Water Year 1997, molybdenum concentrations in Mud Slough (north) upstream of the San Luis Drain discharge and in Salt Slough resembled those recorded in Water Year 1996 and did not exceed the 19 μ g/L objective. While no objective applied to the drain itself, molybdenum concentrations in the discharge were elevated, ranging from 22 μ g/L to 35 μ g/L. This discharge did impact the water quality in the downstream segment of Mud Slough (north), elevating molybdenum concentrations over background (upstream) concentrations. The 19 μ g/L molybdenum objective was exceeded on five separate occasions at the downstream location: in February, April, June, August and September. #### LOADS OF SALT, BORON AND SELENIUM Salt, boron, and selenium loads for the Drainage Project Area (DPA), Grassland Bypass Project (GBP), and the Grassland Watershed were estimated based upon the flow weighted monthly average of the available water quality data. In Water Year 1997, loads that previously had to be summed for individual sites in the DPA were consolidated into the San Luis Drain as part of the GBP. Discharge and loads from the DPA for Water Year 1997 are therefore based on discharge and loads from the GBP. Discharge data for the DPA obtained for the individual water districts was provided by Joe McGahan (personal communication). Discharge and electrical conductivity data for the Grassland Bypass Project was obtained from the USBR (Nigel Quinn, personal communication). Preliminary daily discharge data and daily electrical conductivity for the two Grassland Watershed outflow sites, Mud Slough (north) and Salt Slough, were obtained from the USGS (Pat Shiffer, personal communication). Salt loads for the GBP and the Grassland Watershed sites are based upon daily electrical conductivity and flow measurements. Salt loads for the DPA are based upon laboratory measurement of electrical conductivity for grab samples and automatic Sigmatm samples collected by Regional Board staff. Boron and selenium loads are also based upon combined grab and automatic Sigmatin automatic sample data for the DPA and GBP sites. Only grab samples were collected and used for the Grassland Watershed sites, during Water Year 1997. The methodology used to calculate loads can be found in Grober et al., 1998. Raw data used to present loads have been tabulated and are available in hard copy from the Regional Board's Sacramento office. This information can also be found at the Regional Board web site. Follow the links to view or download files from: # http://www.swrcb.ca.gov/~rwqcb5/home.html The tabulated flow and water quality data used to compute loads for Water Years 1986 through 1997 are presented chronologically. Each year of data is comprised of four data tables; the first table contains mean daily flow data; the second, third and fourth contain electrical conductivity (EC), boron and selenium data, respectively. Additionally, EC, boron, and selenium data are presented for five SigmaTM automatic sampler sites for Water Years 1995, 1996 and 1997. Matrices are sparsely filled for some water quality data. For Water Year 1996, mean daily flow data is available for Panoche Drain and Firebaugh Main Drain. Only mean monthly flow data is available for Pacheco Drain, Charleston Drain, and CCID diversions. Full matrices of mean daily flows for these sites are based on mean monthly flow estimates (Summers Engineering, Inc., 1996). Flow data for the Grassland Bypass Project for Water Year 1997 was obtained from the USBR (Nigel Quinn, personal communication). Mean daily flow for Mud Slough (north), and Salt Slough for Water Years 1996 and 1997 were obtained from the United States Geological Survey (Pat Shiffer, personal communication, 1997). EC data for drains in the DPA are based on water quality samples collected by the Regional Board and by districts in the DPA. Mean daily EC data for the GBP was obtained from continuous EC recorders maintained by the USBR (Nigel Quinn, personal communication). EC data for Mud Slough (north), and Salt Slough are mean daily values obtained from continuous EC recorders maintained by the USGS (Pat Shiffer, personal communication, 1997). Consolidated boron and selenium concentration data presented here are from samples collected and analyzed by the Regional Board. Monthly discharge and monthly flow weighted average
concentrations and loads for the DPA were calculated for Water Year 1996 and 1997 (Table 20). High rainfall in January and early February 1997 (see Figure 2), led to rates of surface runoff in the DPA that exceeded the capacity of the GBP channels. Excess flows from the DPA were discharged to wetland channels in the Grassland Watershed during these flood events. Table 20 does not include flows and loads discharged to wetland channels. Daily flows, electrical conductivities, and selenium concentrations in two major wetland water supply channels from 21 January to 10 February 1997 (the period associated with the flood flows), are listed in Appendix D. Total selenium load to these channels during this time period was 137 pounds (USBR et al., 1997). Monthly discharge and monthly flow weighted average concentrations and loads for 1996 and 1997 for the Grassland Watershed are based on the combined discharge and loads for Mud Slough (north) and Salt Slough (Table 21). Annual discharge from the DPA dropped 30 percent from approximately 53,000 acre-feet in 1996 to approximately 37,500 acre-feet in 1997. Annual salt load for the DPA also dropped 30 percent from just under 200,000 tons in 1996 to 140,000 tons in 1997. Boron loads were practically identical for both years at just over 700,000 pounds. Selenium loads from the DPA dropped 30 percent from approximately 10,000 pounds in Water Year 1996, to under 7,000 pounds in Water Year 1997. Annual discharge in the Grassland Watershed was similar in both years, increasing slightly from approximately 270,000 acre-feet in 1996 to approximately 290,000 acre-feet in 1997. Annual salt load for the Grassland Watershed was similar for both years, dropping from just over 475,000 tons to just under 450,000 tons, while boron loads increased from approximately 1.3 million pounds to 1.4 million pounds between 1996 and 1997. Selenium loads dropped almost 20 percent, from 9,500 pounds in 1996 to 7,700 pounds in 1997. Although the DPA contributes large quantities of salt and boron, it is not the only source of these constituents in the basin. The DPA is, however, the primary source of selenium in the Grassland Watershed. A higher selenium load was in fact calculated for the DPA than the Grassland Watershed in Water Year 1996. This discrepancy may be due to losses in the system or an overestimate of loads from the DPA or underestimates for the Grassland Watershed. For a full discussion of possible calculation errors or system losses see Grober et al, 1998. In 1997, the DPA accounted for 90 percent of the selenium load in the Grassland Watershed. Monthly loads of salt for the DPA and Grassland Watershed are shown in Figure 17. Figures 18 and 19 show the monthly loads of boron and selenium, respectively. The overall pattern of loading for each area was similar in Water Years 1996 to 1997. Monthly salt loads from the DPA were higher in 1996 than 1997 for all months except January. Similarly, salt loads were also higher for the February through September period of 1996 than 1997 in the Grassland Watershed. Salt loads in the Grassland Watershed were higher during the October through January period of 1997 than 1996, particularly in January. This January peak in salt loads in the Grassland Watershed is attributable to extremely high flood flows. January to May boron loads from the GBP were slightly higher in 1997 than 1996. From June through September, boron loads were slightly lower in 1997. A similar trend is evident downstream for the Grassland Watershed, although boron loads were slightly higher in the October to December period of 1997. Once again there was markedly higher boron loading during the extremely wet January of 1997 when compared to 1996. Selenium loads from the DPA were higher for all months of 1996 than 1997 except for April. Selenium loads in the Grassland Watershed were also higher for all months of 1996 than 1997 except for October, January, April, and May. Figure 20 shows the annual discharge for the combined Grassland Watershed outflow sites, Mud Slough (north) and Salt Slough, and for the DPA, for Water Years 1985 through 1997. Figures 21 through 23 depict the annual salt, boron, and selenium loads from the two areas for the same time Table 20. Monthly and Annual Discharge and Salt, Boron and Selenium Loads and Flow Weighted Concentrations for the Drainage Project Area: Water Years 1996 and 1997. | Water Year 1996 | | | Loads | | Flow | Weighted | Conc. | |-----------------|-----------|----------|--------------|------------|----------|----------|-----------| | Month | Flow (af) | Se (lbs) | B (1000 lbs) | TDS (tons) | Se (ppb) | B (ppm) | TDS (ppm) | | Oct-95 | 1,911 | 313 | 27 | 6,346 | 60.2 | 5.12 | 2,442 | | Nov-95 | 2,192 | 324 | 29 | 7,017 | 54.3 | 4.87 | 2,354 | | Dec-95 | 2,586 | 578 | 35 | 9,053 | 82.2 | 4.98 | 2,575 | | Jan-96 | 2,647 | 687 | 44 | 11,148 | 95.4 | 6.10 | 3,097 | | Feb-96 | 5,664 | 1,247 | 78 | 25,872 | 80.9 | 5.09 | 3,359 | | Mar-96 | 4,620 | 1,324 | 67 | 21,107 | 105.4 | 5.32 | 3,359 | | Apr-96 | 4,641 | 1,243 | 73 | 19,431 | 98.5 | 5.81 | 3,079 | | May-96 | 5,626 | 1,145 | 76 | 22,050 | 74.8 | 4.98 | 2,882 | | Jun-96 | 6,825 | 977 | 89 | 23,387 | 52.6 | 4.78 | 2,520 | | Jul-96 | 6,671 | 992 | 90 | 23,147 | 54.7 | 4.96 | 2,551 | | Aug-96 | 6,339 | 747 | 74 | 18,758 | 43.3 | 4.32 | 2,176 | | Sep-96 | 3,255 | 459 | 41 | 10,210 | 51.8 | 4.63 | 2,307 | | | | | | | | | | | WY 96 Total | 52,978 | 10,034 | 723 | 197,526 | 69.6 | 5.02 | 2,742 | | Water Year 1997 | | | Loads | | Flow | Weighted | Conc. | |-----------------|-----------|----------|--------------|------------|----------|----------|-----------| | Month | Flow (af) | Se (lbs) | B (1000 lbs) | TDS (tons) | Se (ppb) | B (ppm) | TDS (ppm) | | - Oct-96 | 1,276 | 202 | 25 | 4,247 | 58.3 | 7.10 | 2,448 | | Nov-96 | 1,569 | 252 | 29 | 5,066 | 59.0 | 6.73 | 2,375 | | Dec-96 | 1,946 | 285 | 38 | 6,718 | 53.9 | 7.18 | 2,539 | | Jan-97 * | 3,702 | 599 | 65 | 12,926 | 59.5 | 6.47 | 2,568 | | Feb-97 * | 4,172 | 878 | 89 | 17,139 | 77.3 | 7.80 | 3,021 | | Mar-97 | 4,875 | 1,119 | 93 | 19,191 | 84.4 | 6.98 | 2,895 | | Apr-97 | 4,452 | 1,280 | 89 | 18,886 | 105.7 | 7.35 | 3,120 | | May-97 | 4,214 | 849 | 85 | 16,804 | 74.1 | 7.39 | 2,932 | | Jun-97 | 3,457 | 611 | 74 | 13,529 | 65.0 | 7.85 | 2,878 | | Ju1-97 | 3,276 | 428 | 69 | 11,619 | 48.0 | 7.71 | 2,608 | | Aug-97 | 3,158 | 348 | 54 | 9,807 | 40.5 | 6.30 | 2,283 | | Sep-97 | 1,444 | 109 | 21 | 4,132 | 27.7 | 5.33 | 2,103 | | · | | | | | | | | | WY 97 Total | 37,541 | 6,959 | 729 | 140,063 | 68.2 | 7.14 | 2,744 | ^{*} Data presented does not include flood flows and loads discharged to wetland channels in the Grassland Watershed during a late January and early February 1997 flood event (see text and Appendix D) Table 21. Monthly and Annual Discharge and Salt, Boron and Selenium Loads and Flow Weighted Concentrations for the Grassland Watershed: Water Years 1996 and 1997. | Water Year 1996 | | | Loads | | Flow | Weighted | Conc. | |-----------------|-----------|----------|--------------|------------|----------|----------|-----------| | Month | Flow (af) | Se (lbs) | B (1000 lbs) | TDS (tons) | Se (ppb) | B (ppm) | TDS (ppm) | | Oct-95 | 13821 | 248 | 40 | 15696 | 6.6 | 1.05 | 835 | | Nov-95 | 15894 | 319 | 56 | 22450 | 7.4 | 1.30 | 1039 | | Dec-95 | 22033 | 538 | 94 | 36391 | 9.0 | 1.56 | 1215 | | Jan-96 | 17621 | 625 | 97 | 37333 | 13.0 | 2.03 | 1558 | | Feb-96 | 47067 | 1466 | 210 | 80753 | 11.5 | 1.64 | 1262 | | Mar-96 | 43499 | 1451 | 215 | 83854 | 12.3 | 1.81 | 1418 | | Apr-96 | 19991 | 911 | 109 | 40429 | 16.7 | 2.00 | 1487 | | May-96 | 17007 | 851 | 88 | 31194 | 18.4 | 1.91 | 1349 | | Jun-96 | 17365 | 906 | 109 | 38354 | 19.2 | 2.30 | 1624 | | Jul-96 | 18650 | 956 | 123 | 36708 | 18.8 | 2.42 | 1447 | | Aug-96 | 21074 | 749 | 94 | 34444 | 13.1 | 1.65 | 1202 | | Sep-96 | 13927 | 470 | 66 | 20120 | 12.4 | 1.74 | 1062 | | | | | | | | | | | WY 96 Total | 267948 | 9491 | 1299 | 477725 | 13.0 | 1.78 | 1311 | | Water Year 1997 | | | Loads | | Flow | Weighted | Conc. | |-----------------|-----------|----------|--------------|------------|----------|----------|-----------| | Month | Flow (af) | Se (1bs) | B (1000 lbs) | TDS (tons) | Se (ppb) | B (ppm) | TDS (ppm) | | Oct-96 | 13566 | 279 | 52 | 18084 | 7.6 | 1.42 | 980 | | Nov-96 | 23296 | 302 | 82 | 29742 | 4.8 | 1.30 | 939 | | Dec-96 | 31885 | 355 | 112 | 43003 | 4.1 | 1.30 | 992 | | Jan-97 | 59661 | 833 | 214 | 80247 | 5.1 | 1.32 | 989 | | Feb-97 | 40336 | 1055 | 211 | 69194 | 9.6 | 1.92 | 1261 | | Mar-97 | 32632 | 1169 | 180 | 57205 | 13.2 | 2.03 | 1289 | | Apr-97 | 15999 | 1205 | 126 | 39133 | 27.7 | 2.91 | 1799 | | May-97 | 16225 | 859 | 110 | 30740 | 19.5 | 2.49 | 1393 | | Jun-97 | 14030 | 586 | 93 | 26449 | 15.4 | 2.44 | 1386 | | Jul-97 | 15410 | 504 | 99 | 23926 | 12.0 | 2.37 | 1142 | | Aug-97 | 16021 | 437 | 80 | 20405 | 10.0 | 1.83 | 937 | | Sep-97 | 9193 | 138 | 35 | 10219 | 5.5 | 1.41 | 817 | | | | | | | | | | | WY 97 Total | 288253 | 7722 | 1396 | 448347 | 9.8 | 1.78 | 1144 | Figure 17. Monthly Salt Loads Discharged from the Drainage Project Area and the Grassland Watershed, Water Years 1996 and 1997 Figure 18. Monthly Boron Loads Discharged from the Drainage Project Area and the Grassland Watershed, Water Years 1996 and 1997 Figure 19. Monthly Selenium Loads Discharged from the Drainage Project Area and the Grassland Watershed, Water Years 1996 and 1997 Figure 20. Annual Discharge from the Drainage Project Area and the Grassland Watershed, Water Years 1986 through 1997 Figure 21. Annual Salt Load from the Drainage Project Area and the Grassland Watershed, Water Years 1986 through 1997 Figure 22. Annual Boron Load from the Drainage Project Area and the Grassland Watershed, Water Years 1986 through 1997 Figure 23. Annual Selenium Load from the Drainage Project Area and the Grassland Watershed, Water Years 1986 through 1997 period. Discharge for the DPA and Grassland Watershed for Water Years 1996
and 1997 was similar to Water Year 1995, another wet year, but significantly higher than 1991 through 1994. Water Year 1995 was the first wet year following several dry and critically dry years. High loads of all constituents in 1995 likely resulted from the leaching of salts that had accumulated in the basin during previous years. Generally lower loads of all constituents in 1996 and 1997 were likely due to lower residual salt loads in the Grassland Watershed following a series of wet years. Markedly lower selenium loads from the DPA are also attributable to district recycling and other water conservation and drainage reduction methods that were initiated in 1997 to reduce selenium loads as part of the Grassland Bypass Project. # REFERENCES - Chilcott, J.E., Westcot, D.W., Belden, K.K., and O'Connor, K. A., 1989. Agricultural Drainage Contribution to Water Quality in the Grassland Area of Western Merced County, California. October 1987 through September 1988. Regional Water Quality Control Board, Central Valley Region Report. - Chilcott, J.E., Karkoski, J., and Ryan, M.M., 1995b. Agricultural Drainage Contribution to Water Quality in the Grassland Area of Western Merced County, California. October 1992 through September 1993. Regional Water Quality Control Board, Central Valley Region Report. - Gilbert, Robert O., 1987. Statistical Methods for Environmental Pollution Monitoring. Var Nostrand Reinhold - Grober, L., Karkoski, J. And Dinkler, L. 1998. A Total Maximum Monthly Load Model for the San Joaquin River. Regional Water Quality Control Board, Central Valley Region Report. - Hesel, D.D., and Hirsch, R.M., 1997. Statistical Methods in Water Resources. Studies in Environmental Science. 49 Elsevier. - James, E.W., Westcot, D.W., Grewell, B.J., Belden, K.K., Boyd, T.F., Waters, R.I, and Thomasson, R.R. 1988b. *Agricultural Drainage Contributions to Water Quality In the Grassland Area of Western Merced County, California.* Regional Water Quality Control Board, Central Valley Region Report. - Karkoski, J. and Tucker, R.T, 1993b. Agricultural Drainage Contribution to Water Quality in the Grassland Area of Western Merced County, California. October 1991 through September 1992, (Water Year 1992). Regional Water Quality Control Board, Central Valley Region Report. - McGahan, Joe. Drainage Coordinator, San Luis and Delta Mendota Water Authority, Los Banos, CA. 1997. Personal communication. - Pierson, F.W., James, E.W. and Thomasson, R.R., 1989a. *Hydrology Study of Mud Slough (North)*, *Merced County*. Regional Water Quality Control Board, Central Valley Region Report. - Pierson, F.W., James, E.W. and Thomasson, R.R., 1989b. Hydrology Study of Salt Slough, Merced County. Regional Water Quality Control Board, Central Valley Region Report. - Quinn, Nigel W.T. Staff Scientist, Lawrence Berkeley National Laboratory, Berkeley, CA. 1998. Personal communication. - SWRCB (State Water Resources Control Board, Cal EPA). 1995. Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary. - Schiffer, Pat. Technical Information Specialist, US Geological Survey, Sacramento, CA. 1997. Personal communication. - Skorupa, J.P., 1998. Selenium Poisoning of Fish and Wildlife in Nature: Lessons from Twelve Real-World Examples, in W. Frankenberger and R.A. Engberg, eds., Environmental Chemistry of Selenium, Marcel Dekker Inc., New York, Chapter 18, pages 315 to 354 - SLDMWA (San Luis Delta Mendota Water Authority). 15 May 1996. Letter Discussing Groundwater Discharge from the San Luis Drain Under NPDES Permit No. CA0083917. - SLDMWA (San Luis Delta Mendota Water Authority). 22 April 1996. Letter Discussing Seepage from Main Drain into Camp 13 Ditch. - Steensen, R.A., Chilcott, J.E., and Burns, T. 1996b. Agricultural Drainage Contributions to Water Quality in the Grassland Area of Western Merced County, California, October 1994 through September 1995, (Water Year 1995). Regional Water Quality Control Board, Central Valley Region Report. - Steensen, R.A., Chilcott, J.E., Grober, L.F., Jensen, L.D., Eppinger, J.L., and Burns, T. 1998. Compilation of Electrical Conductivity, Boron, and Selenium Water Quality Data for the Grassland Watershed and San Joaquin River, May 1985 September 1995. Regional Water Quality Control Board, Central Valley Region Report. - USBR (U.S. Bureau of Reclamation). 1995. Finding of No Significant Impact and Supplemental Environmental Assessment, Grassland Bypass Project, Interim Use of a Portion of the San Luis Drain for Conveyance of Drainage Water Through the Grassland Water District and Adjacent Grassland Areas. Mid Pacific Region, Sacramento, California, November, 1995. - USBR, USEPA, USFWS, USGS, CVRWQCB, CDFG. 1997. *Impact of the January 1997 Flood Event on the Grassland Bypass Channel Project*. Prepared for the Grassland Bypass Project Oversight Committee. September 1997. - Vargas, A., Karkoski, J., and Ryan, M.M., 1995. Agricultural Drainage Contribution to Water Quality in the Grassland Area of Western Merced County, California. October 1991 through September 1992. Regional Water Quality Control Board, Central Valley Region Report. - Westcot, D.W., Chilcott, J.E., Enos, C.A., and Rashmawi, E A., 1990b. Agricultural Drainage Contribution to Water Quality in the Grassland Area of Western Merced County, California. October 1988 through September 1989 (Water Year 1989). Regional Water Quality Control Board, Central Valley Region Report. - Westcot, D.W., Chilcott, J.E., and Enos, C A., 1991b. Agricultural Drainage Contribution to Water Quality in the Grassland Area of Western Merced County, California. October 1989 through September 1990 (Water Year 1990). Regional Water Quality Control Board, Central Valley Region Report. - Westcot, D.W., Chilcott, J.E., and Wright, T.S., 1992b. Agricultural Drainage Contribution to Water Quality in the Grassland Area of Western Merced County, California. October 1990 through September 1991 (Water Year 1991). Regional Water Quality Control Board, Central Valley Region Report. APPENDIX A Water Quality Data for Grab Samples: Water Year 1996 | Map Index | RWQCB Site I.D. | Site Name | Page | |-----------|-----------------|--------------------------------------|------| | I-1 | MER556 | Main (Firebaugh) Drain @ Russel Ave. | 61 | | I-2 | MER501 | Panoche Drain | 62 | | I-4 | MER506 | Agatha Canal @ Mallard Road | 63 | | I-6 | MER504 | Hamburg Drain | 64 | | I-7 | MER505 | Camp 13 Slough | 65 | | I-8 | MER502 | Charleston Drain | 66 | | I-9 | MER555 | Almond Drive Drain | 67 | | I-10 | MER509 | Rice Drain | 68 | | I-12 | MER528 | Salt Slough Ditch @ Hereford Road | 69 | | T-1 | MER510 | CCID Main @ Russell Avenue | 70 | | T-5 | MER519 | Sante Fe Canal @ Henry Miller Road | 71 | | T-7A | MER532 | San Luis Canal @ Henry Miller Road | 72 | | T-13 | MER548 | Porter-Blake Bypass | 73 | | O-1 | MER551 | Mud Slough (N) @ Newman Gun Club | 74 | | O-2 | MER542 | Mud Slough (N) @ San Luis Drain | 75 | | O-3 | MER554 | Los Banos Creek @ Highway 140 | 76 | | O-4 | MER531 | Salt Slough @ Lander Avenue | 77 | | Legend | of Abbreviations | |--------|-------------------------| | EC | Electrical Conductivity | | Se | Selenium | | Mo | Molybdenum | | Cr | Chromium | | Cu | Copper | | Ni | Nickel | | Pb | Lead | | Zn | Zinc | | В | Boron | | C1 | Chlorine | | SO4 | Sulfate | | HDNS | Hardness | Figure A-1 # Main (Firebaugh) Drain at Russel Avenue (MER556) Location: Latitude: 36°55'27", Longitude 120°39'11". In SW 1/4, SW 1/4, SW 1/4, Sec. 34, T.11S.,R.12E. East side of Russel Avenue, 2.7 miles south of Dos Palos. | East si | ide of Russe | | 2.7 miles | south of Dos Pa
EC | los.
Se | Мо | В | Cl | SO4 | HDNS | Ca | Mg | |--------------------|--------------|----------------------|------------|-----------------------|--------------------|------|------------|------|------|------|------|----------| | Date | Time | Temp
°F | рH | μmhos/cm | зе
μ g/L | μg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/6/95 | 815 | 64 | 7.6 | 3950 | 72.9 | | 4.9 | | | | | | | 10/0/95 | 803 | 64 | 7.5 | 1940 | 30.0 | | 2.7 | | | | | | | 10/12/95 | 812 | 64 | 7.8 | 2580 | 37.9 | | 3.5 | | | | | | | 10/13/95 | 1045 | NA | 8.0 | 4200 | 41.0 | 45 | 5.3 | 450 | 1600 | 1120 | 280 | 103 | | 11/3/95 | 811 | 59 | 7.8 | 3280 | 40.2 | | 4.2 | | | | | | | 11/9/95 | 851 | 60 | 8.3 | 2220 | 27.1 | | 2.9 | | | | | | | 11/20/95 | 806 | 59 | 8.0 | 2410 | 29.4 | | 3.2 | | | | | | | 11/27/95 | 846 | 52 | 7.9 | 3320 | 57.8 | | 4.7 | 290 | 1200 | 910 | 220 | 88 | | 12/8/95 | 932 | 58 | 8.1 | 2590 | 52.2 | | 3.1 | | | | | | | 12/18/95 | 930 | NA | 8.0 | 3080 | 62.0 | | 4.1 | | | | | | | 12/22/95 | 850 | 48 | 8.1 | 3680 | 80.4 | | 5.1 | | | | | | | 12/28/95 | 1105 | 50 | 8.0 | 2720 | 52.8 | | 3.4 | 240 | 980 | NA | 170 | 73 | | 1/4/96 | 1020 | 50 | 8.3 | 6590 | 161 | | 9.4 | | | | | | | 1/11/96 | 908 | 52 | 8.4 | 3940 | 78.0 | | 4.5 | | | | | | | 1/18/96 | 1041 | 50 | 8.4 | 4490 | 114 | | 5.2 | | | | | | | 1/25/96 | 1029 | 52 | 7.9 | 3660 | 77.0 | 31 | 5.0 | 350 | 1200 | 720 | 180 | 67 | | 2/2/96 | 948 | 56 | 7.9 | 3370 | 58.0 | | 3.0 | | | | | | | 2/9/96 | NA | NA | NA | NA | NA | | NA | | | | | | | 2/16/96 | 754 | 61 | 7.7 | 4680 | 89.6 | | 4.5 | | | | | | | 2/23/96 | 1001 | 56 | 7.9 | 4810 | 101 | | 5.2 | 490 | 1700 | 950 | 234 | 88 | | 3/1/96 | 926 | 52 | 8.1 | 6120 | 162 | | 6.8 | | | | | | | 3/8/96 | 910 | 60 | 8.3 | 4570 | 104 | | 4.8 | | | | | | | 3/18/96 | 1600 | 70 | 7.9 | 5380 | 138 | | 6.1 | | | | | | | 3/21/96 | 845 | 66 | 7.8 | 5610 | 146 | | 5.8 | | | 24.5 | • | 05 | | 3/28/96 | 930 | 62 | 7.9 | 3960 | 108 | | 4.6 | 450 | 1400 | 910 | 219 | 87 | | 4/3/96 | 942 | 61 | 6.8 | 4610 | 120 | | 5.1 | | | | | | | 4/12/96 | 934 | 62 | 7.6 | 4110 | 96.6 | | 4.5 | | | | | | | 4/19/96 | 840 | 60 | 8.1 | 3220 | 74.2 | 20 | 3.8 | 200 | 1200 | 770 | 187 | 74 | | 4/25/96 | 1000 | 66 | 8.1 | 3480 | 75.4 | 20 | 4.3 | 320 | 1200 | 770 | 107 | 14 | | 5/3/96 | 828 | 69 | 7.7 | 4400 | 119 | | 5.6 | | |
 | | | 5/10/96 | 910 | 63 | 7.9 | 3050 | 51.5 | | 2.8 | | | | | | | 5/16/96 | 1030 | 67 | 7.6 | 2560 | 44.0 | | 2.4
3.3 | | | | | | | 5/24/96 | 950 | 60 | 7.8 | 2750 | 42.8 | | 3.3 | 260 | 870 | 650 | 156 | 62 | | 5/30/96 | 940 | 68 | 7.9 | 2820 | 50.2
35.6 | | 3.3 | 200 | 870 | 050 | 150 | 0,2 | | 6/6/96 | 1020 | 74 | 7.6 | 2640
2220 | 30.4 | | 2.7 | | | | | | | 6/13/96 | 852 | 69
70 | 7.8
7.7 | 2640 | 37.7 | | 3.5 | | | | | | | 6/19/96
6/27/96 | 900 | 72
68 | 7.7
7.8 | 3110 | 50.7 | | 3.5 | 280 | 990 | 690 | 170 | 64 | | | 1040 | 80 | 7.7 | 3320 | 60.4 | | 3.7 | 200 | ,,,, | 0,0 | | | | 7/2/96 | 920
815 | 76 | 7.7
7.6 | 2870 | 44.1 | | 3.8 | | | | | | | 7/11/96
7/19/96 | 854 | 69 | 7.0
7.7 | 1910 | 23.0 | | 2.6 | | | | | | | 7/25/96 | 950 | 79 | 7.7 | 1990 | 27.2 | 7 | 2.6 | 160 | 620 | 460 | 110 | 46 | | 8/2/96 | 930 | 76 | 8.1 | 2100 | 29.4 | • | 2.7 | | | | | | | 8/8/96 | 950 | 76
74 | 7.4 | 1930 | 28.2 | | 2.4 | | | | | | | 8/15/96 | 830 | 7 4
78 | 7.7 | 2040 | 25.7 | | 2.6 | | | | | | | 8/23/96 | 849 | 72 | 7.9 | 1960 | 29.8 | | 2.6 | | | | | | | 8/28/96 | 1015 | 74 | 7.8 | 2310 | 30.2 | | 2.5 | 200 | 650 | 460 | 100 | 51 | | 9/5/96 | 931 | 68 | 7.8 | 2690 | 48.4 | | 3.7 | | | | | | | 9/12/96 | 1101 | 67 | 7.7 | 2650 | 44.0 | | 3.5 | | | | | | | 9/17/96 | 940 | 62 | 8.2 | 1940 | 28.1 | | 2.5 | | | | | • | | 9/26/96 | 1120 | 68 | 7.7 | 2930 | 31.7 | | 2.8 | 280 | 900 | 550 | 130 | 55 | | Coun | t | 48 | 50 | 50 | 50 | 4 | 50 | 12 | 12 | 11 | 12 | 12 | | Min | | 48 | 6.8 | 1910 | 23.0 | 7 | 2.4 | 160 | 620 | 460 | 100 | 46 | | Max | ζ. | 80 | 8.4 | 6590 | 162 | 45 | 9.4 | 490 | 1700 | 1120 | 280 | 103 | | Mean | 1 | 64 | 7.8 | 3310 | 64.0 | 26 | 4.0 | 314 | 1109 | 745 | 180 | 72
70 | | Geo Mear | | 63 | 7.8 | 3130 | 54.8 | 21 | 3.8 | 299 | 1060 | 716 | 172 | 70 | | Media | 1 | 64 | 7.8 | 3060 | 51.1 | 26 | 3.6 | 285 | 1095 | 720 | 175 | 70 | Panoche Drain at O'Banion Gauge Station (MER501) Location: Latitude 36°55'14", Longitude 120°41'43". In SW 1/4, SW 1/4, SW 1/4, Sec. 32, T.11S., R.12E. Located 0.5 miles south of CCID Main Canal, 1.9 miles west of Russel Road. 5.5 miles SW of Dos Palos. 3.4 miles SW of South Dos | Temp | | | | EC | Se | Mo | B Cl | | SO4 | HDNS | Ca | Mg | |--------------------|-------------|----------|------------|--------------|--------------|--------------|------------|------------|--------------|--------------|-------------|-----------| | Date | Time | °F | pН | μmhos/cm | μg/L | μ g/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/6/95 | 910 | 60 | 7.7 | 4390 | 19.7 | | 7.3 | | | | | | | 10/12/95 | 826 | 61 | 7.3 | 5380 | 26.2 | | 9.3 | | | | | | | 10/18/95 | 902 | 64 | 7.5 | 4920 | 80.6 | | 8.2 | | | | | | | 10/27/95 | 1110 | NA | 8.5 | 4990 | 104 | 13 | 7.8 | 680 | 1600 | 1180 | 300 | 105 | | 11/3/95 | 847 | 60 | 7.9 | 3790 | 55.8 | | 6.0 | | | | | | | 11/9/95 | 905 | 60 | 8.1 | 4230 | 80.6 | | 6.4 | | | | | | | 11/20/95 | 853 | 58 | 7.9 | 3440 | 61.4 | | 5.1 | | | | | | | 11/27/95 | 858 | 52 | 8.0 | 3700 | 62.4 | | 5.4 | 490 | 1100 | 1100 | 280 | 87 | | 12/8/95 | 1010 | 58 | 7.9 | 3620 | 71.7 | | 5.2 | | | | 1 | | | 12/18/95 | NA | NA | NA | NA | NA | | NA | | | | | | | 12/22/95 | 930 | 49 | 8.0 | 4430 | 103 | | 8.1 | | | | • | 440 | | 12/28/95 | 1121 | 54 | 8.7 | 5200 | 137 | | 7.3 | 710 | 1700 | NA | 380 | 110 | | 1/4/96 | 1040 | 52 | 7.7 | 5020 | 40.4 | | 7.1 | | | | | | | 1/11/96 | 923 | 52 | 8.0 | 5140 | 124 | | 7.3 | | | | | | | 1/18/96 | 1155 | 52 | 8.1 | 4450 | 104 | 0 | 6.4 | 550 | 1000 | 050 | 070 | 70 | | 1/25/96 | 1059 | 52 | 7.7 | 4270 | 85.4 | 8 | 6.2 | 550 | 1200 | 950 | 270 | 70 | | 2/2/96 | 1030 | 58 | 7.8 | 3940 | 62.0 | | 5.0 | | | | | | | 2/9/96 | NA | NA | NA | NA | NA | | NA | | | | | | | 2/16/96 | NA | NA | NA | NA
4810 | NA | | NA | 600 | 1400 | 1100 | 300 | 77 | | 2/23/96 | 915 | 57
54 | 7.8 | 4810 | 75.4
89.2 | | 7.0
7.6 | 000 | 1400 | 1100 | 300 | 77 | | 3/1/96 | 1015 | 54
50 | 7.9 | 4810
5250 | 89.2
106 | | 3.8 | | | | | | | 3/8/96 | 925 | 58
73 | 7.9
7.9 | 3990 | 80.8 | | 5.5 | | | | | | | 3/18/96 | 1635
900 | 62 | NA | 5210 | 117 | | 8.0 | | | | | | | 3/21/96
3/28/96 | 950 | 65 | 7.9 | 4950 | 62.6 | | 9.0 | 730 | 1600 | 1200 | 325 | 93 | | 4/3/96 | 950 | 62 | 7.2 | 5130 | 116 | | 8.0 | 750 | 1000 | 1200 | 323 | ,5 | | 4/12/96 | 1008 | 60 | 7.7 | 5330 | 86.6 | | 8.4 | | | | | | | 4/19/96 | 910 | 60 | 7.7 | 4890 | 115 | | 8.6 | | | | | | | 4/25/96 | 1025 | 66 | 8.0 | 5270 | 121 | 12 | 8.8 | 640 | 1600 | 1200 | 320 | 100 | | 5/3/96 | 905 | 68 | 7.8 | 4920 | 102 | 12 | 9.4 | 040 | 1000 | 1200 | 320 | 100 | | 5/10/96 | 935 | 63 | 7.7 | 5110 | 85.6 | | 6.6 | | | | | | | 5/16/96 | 1110 | 66 | 7.8 | 4290 | 79.2 | | 5.7 | | | | | | | 5/24/96 | 1010 | 59 | 7.9 | 4760 | 83.5 | | 7.8 | | | | | | | 5/30/96 | 1010 | 68 | 7.9 | 5030 | 96.7 | | 7.8 | 610 | 1500 | 1200 | 320 | 91 | | 6/6/96 | 1120 | 80 | 7.8 | 4460 | 64.2 | | 7.1 | 010 | | | | | | 6/13/96 | 907 | 68 | 7.8 | 4500 | 62.4 | | 7.6 | | | | | | | 6/19/96 | 840 | 68 | 7.4 | 4440 | 77.5 | | 7.9 | | | | | | | 6/27/96 | 1125 | 70 | 7.8 | 3980 | 65.8 | | 6.5 | 470 | 1100 | 880 | 240 | 69 | | 7/2/96 | 935 | 76 | 7.5 | 4160 | 63.0 | | 7.0 | | | | | | | 7/11/96 | 910 | 73 | 7.5 | 4620 | 66.6 | | 8.0 | | | | | | | 7/19/96 | 902 | 68 | 7.5 | 4340 | 60.2 | | 6.9 | | | | | | | 7/25/96 | 1035 | 80 | 7.8 | 4480 | 66.0 | 15 | 7.8 | 510 | 1300 | 1010 | 270 | 80 | | 8/2/96 | 1000 | 74 | 7.8 | 4170 | 68.3 | | 7.2 | | | | | | | 8/8/96 | 1040 | 76 | 7.3 | 4060 | 61.0 | | 6.2 | | | | | | | 8/15/96 | 850 | 78 | 7.5 | 4080 | 60.4 | | 6.3 | | | | | | | 8/23/96 | 920 | 74 | 7.7 | 3610 | 46.0 | | 6.2 | | | | | | | 8/28/96 | 1035 | 78 | 7.9 | 4380 | 66.2 | | 6.4 | 450 | 1200 | 780 | 190 | 74 | | 9/5/96 | 1009 | 66 | 7.7 | 4150 | 72.7 | | 7.1 | | | | | | | 9/12/96 | 1110 | 66 | 7.7 | 3800 | 72.3 | | 6.2 | | | | | | | 9/17/96 | 1010 | 64 | 7.9 | 4050 | 94.9 | | 7.0 | | | | | | | 9/26/96 | 1130 | 70 | 7.8 | 5210 | 93.2 | <u></u> | 7.8 | 660 | 1500 | 950 | 233 | 89 | | | _ | | | 40 | 40 | | 40 | 10 | 40 | 11 | 10 | 10 | | | Count | 47 | 47 | 48 | 48 | 4 | 48 | 12 | 12 | 11 | 12 | 12 | | | Min | 49 | 7.2 | 3440 | 19.7 | 8 | 3.8 | 450 | 1100 | 780
1200 | 190 | 69
110 | | | Max | 80 | 8.7 | 5380 | 137 | 15 | 9.4 | 730
502 | 1700 | 1200 | 380 | 110 | | | Mean | 64 | 7.8 | 4520 | 79.1 | 12 | 7.1 | 592 | 1400 | 1050 | 286 | 87
86 | | | Geo Mean | 64 | 7.8 | 4490
4460 | 74.7
76.5 | 12 | 7.0 | 584
605 | 1385
1450 | 1040
1100 | 281
290 | 88 | | | Median | 64 | 7.8 | 4460 | 76.5 | 13 | 7.1 | COO | 1430 | 1100 | <i>∠</i> 70 | υu | Agatha Canal at Mallard Road (MER506) Location: Latitude: 36°56'12", Longitude 120°42'07". In NE 1/4, NW 1/4, SW 1/4, Sec. 7, T.11S., R.11E. South of Sante Fe Grade at Brito, west of Mallard Road. 4.5 miles west of Dos Palos. | | | Temp | | EC | Se | В | Cl | SO4 | HDNS | Ca | Mg | |----------|------|------|-----|---------------------------|--------|------|------|------|------|------|------| | Date | Time | °F | pН | μ mh os/ cm | μg/L · | μg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 1135 | NA | 7.9 | 254 | 0.9 | 5.5 | 25 | 29 | 60 | 14 | 6 | | 11/27/95 | 924 | 56 | 8.3 | 553 | 1.4 | 0.38 | 69 | 74 | 120 | 28 | 13 | | 12/28/95 | 1144 | 54 | 8.8 | 4490 | 100 | 6.3 | 610 | 1400 | NA | 350 | 110 | | 1/25/96 | 1125 | 56 | 7.8 | 4260 | 74.9 | 6.2 | 550 | 1200 | 910 | 250 | 71 | | 2/23/96 | 1055 | 58 | 7.9 | 4730 | 74.3 | 6.6 | 540 | 1500 | 1100 | 295 | 84 | | 3/28/96 | 1020 | 64 | 8.2 | 4070 | 41.7 | 5.7 | 580 | 1300 | 1000 | 260 | 85 | | 4/25/96 | 1100 | 68 | 8.5 | 200 | 1.3 | 0.22 | 16 | 25 | 64 | 15 | 6.5 | | 5/30/96 | 1100 | 68 | 8.5 | 622 | 5.8 | 0.50 | 63 | 120 | 140 | 32 | 15 | | 6/27/96 | 1150 | 74 | 8.5 | 518 | 1.3 | 0.30 | 56 | 73 | 120 | 28 | 12 | | 7/25/96 | 1056 | 82 | 8.6 | 382 | 1.4 | 0.23 | 38 | 48 | 100 | 24 | 9.9 | | 8/28/96 | 1100 | 72 | 7.9 | 2930 | 35.0 | 4.1 | 280 | 800 | 550 | 130 | 55 | | 9/26/96 | 1205 | 72 | 8.5 | 324 | 0.9 | 0.12 | 29 | 29 | 72 | 15 | 8.6 | | | | | | | | | | | | | | | Count | | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 11 | 12 | 12 | | Min | | 54 | 7.8 | 200 | 0.9 | 0.12 | 16 | 25 | 60 | 14 | 6 | | Max | | 82 | 8.8 | 4730 | 100 | 6.6 | 610 | 1500 | 1100 | 350 | 110 | | Mean | | 66 | 8.3 | 1944 | 28.2 | 3.0 | 238 | 550 | 385 | 120 | 40 | | Geo Mean | | 65 | 8.3 | 1016 | 7.0 | 1.2 | 110 | 186 | 207 | 59 | 23 | | Median | | 68 | 8.4 | 588 | 3.6 | 2.3 | 66 | 97 | 120 | 30 | 14 | # Hamburg Drain near Camp 13 Slough (MER504) Location: Latitude: 36°56'20", Longitude 120°45'26". In SE 1/4, SE 1/4, SW 1/4, Sec. 27, T.11S., R.11E. 50 feet south of CCID main canal. 9.2 miles S-SE of Los Banos. 6.7 miles W-SW of South Dos Palos. | or cc | mani ca | Temp | mos o on | EC Ec | Se | Mo | В | Cl | SO4 | HDNS | Ca | Mg | |--------------------|------------|----------|------------|------------------|--------------|------|------------|------|------|------|------|------| | Date | Time | °F | pН | μ mhos/cm | μ g/L | μg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/6/95 | 755 | 64 | 8.1 | 479 | 2.0 | | 0.32 | | | | | | | 10/12/95 | 744 | 65 | 7.9 | 383 | 2.1 | | 0.32 | | | | | | | 10/18/95 | 753 | 62 | 6.8 | 5450 | 80.6 | | 6.2 | | | | | | | 10/27/95 | 910 | NA | 7.9 | 5500 | 79.7 | 7 | 6.5 | 870 | 1700 | 1800 | 540 | 109 | | 11/3/95 | 753 | 58 | 7.1 | 5120 | 79.4 | | 6.1 | | | | | | | 11/9/95 | 833 | 58 | 7.6 | 3860 | 43.9 | | 4.1 | | | | | | | 11/20/95 | 750 | 59 | 7.9 | 3650 | 40.2 | | 4.4 | | | | | | | 11/27/95 | 810 | 52 | 8.1 | 3490 | 52.0 | | 3.5 | 510 | 1000 | 1200 | 350 | 74 | | 12/8/95 | 915 | 58 | 8.1 | 3760 | 36.8 | | 5.0 | | | | | | | 12/18/95 | 845 | NA | 7.9 | 4090 | 27.8 | | 5.7 | | | | | | | 12/22/95 | 825 | 48 | 8.1 | 3760 | 26.2 | | 4.4 | | | | | | | 12/28/95 | 1037 | 52 | 9.6 | 3360 | 22.3 | | 3.3 | 410 | 1300 | NA | 470 | 62 | | 1/4/96 | 910 | 47 | 8.1 | 3650 | 29.8 | | 3.6 | | | | | | | 1/11/96 | 843 | 48 | 8.1 | 3920
| 40.5 | | 3.4 | | | | | | | 1/18/96 | 1003 | 50 | 8.5 | 3480 | 27.2 | | 3.3 | 000 | 4000 | 1700 | 500 | 100 | | 1/25/96 | 950 | 51 | 7.7 | 5790 | 100 | 7 | 6.0 | 880 | 1800 | 1700 | 520 | 100 | | 2/2/96 | 825 | 62 | 7.4 | 5650 | 107 | | 4.4 | | | | | | | 2/9/96 | 945 | 59 | 7.7 | 5000 | 67.4 | | 5.1 | | | | | | | 2/16/96 | NA | NA | NA | NA
50.60 | NA | | NA
50 | 970 | 1000 | 1700 | 530 | 102 | | 2/23/96 | 851 | 60
50 | 7.8 | 5960 | 93.6 | | 5.9 | 870 | 1800 | 1700 | 330 | 102 | | 3/1/96 | 910 | 59 | 7.8 | 6890 | 129 | | 9.2
3.5 | | | | | | | 3/8/96 | 855 | 52 | 8.3 | 3840 | 36.1
96.4 | | 5.9 | | | | | | | 3/18/96 | 1538 | 77 | 8.1 | 5590
5540 | 96.4
106 | | 5.2 | | | | | | | 3/21/96 | 820 | 60 | 7.8 | 5540
5480 | 110 | | 5.4 | 780 | 1900 | 1900 | 560 | 120 | | 3/28/96 | 845 | 62 | 7.8 | 5720 | 106 | | 5.9 | 700 | 1500 | 1900 | 500 | 120 | | 4/3/96 | 919 | 60
50 | 6.9
6.9 | 4820 | 90.4 | | 4.2 | | | | | | | 4/12/96
4/19/96 | 914
820 | 58
59 | 8.1 | 3990 | 71.5 | | 4.4 | | | | | | | 4/25/96 | 915 | 63 | 7.5 | 5100 | 98.1 | 5 | 5.1 | 640 | 1700 | 1600 | 470 | 92 | | 5/3/96 | 758 | 61 | 7.3
7.1 | 4620 | 85.0 | J | 5.4 | 040 | 1700 | 1000 | .,, | - | | 5/10/96 | 850 | 62 | 7.7 | 4790 | 76.2 | | 4.0 | | | | | | | 5/16/96 | 835 | 65 | 7.6 | 4550 | 66.2 | | 4.3 | | | | | | | 5/24/96 | 930 | 58 | 7.9 | 6040 | 116 | | 6.8 | | | | | | | 5/30/96 | 905 | 64 | 7.6 | 4580 | 57.8 | | 5.7 | 620 | 1400 | 1300 | 390 | 90 | | 6/6/96 | 1000 | 76 | 7.8 | 458 | 3.2 | | 0.3 | | | | | | | 6/13/96 | 835 | 68 | 7.9 | 3190 | 47.0 | | 3.0 | | | | | | | 6/19/96 | 845 | 68 | 7.3 | 4290 | NA | | 4.7 | | | | | | | 6/27/96 | 930 | 68 | 7.6 | 5530 | 63.6 | | 7.7 | 700 | 1800 | 2000 | 620 | 100 | | 7/2/96 | 905 | 72 | 6.4 | 5100 | 62.6 | | 4.0 | | | | | | | 7/11/96 | 800 | 69 | 7.2 | 4005 | 49.7 | | 5.1 | | | | | | | 7/19/96 | 840 | 66 | 6.8 | 4590 | 62.3 | | 5.0 | | | | | | | 7/25/96 | 840 | 74 | 7.6 | 3380 | 38.4 | 4 | 4.0 | 400 | 990 | 990 | 290 | 64 | | 8/2/96 | 915 | 70 | 7.8 | 3960 | 46.4 | | 4.7 | | | | | | | 8/8/96 | 910 | 70 | 6.5 | 3180 | 38.6 | | 3.4 | | | | | | | 8/15/96 | 810 | 70 | 6.9 | 3330 | 38.4 | | 4.1 | | | | | | | 8/23/96 | 832 | 68 | 7.4 | 4390 | 60.6 | | 4.9 | | | | | | | 8/28/96 | 938 | 74 | 7.6 | 4480 | 48.2 | | 4.6 | 590 | 1200 | 1000 | 260 | 88 | | 9/5/96 | 915 | 62 | 6.9 | 5090 | 70.6 | | 6.3 | | | | | | | 9/12/96 | 1040 | 69 | 7.4 | 5340 | 47.8 | | 9.7 | | | | | | | 9/17/96 | 920 | 62 | 7.6 | 4000 | 33.3 | | 6.2 | | | | | | | 9/26/96 | 1050 | 72 | 8.5 | 446 | 1.5 | | 0.24 | 45 | 59 | 93 | 21 | 10 | | Count | | 48 | 50 | 50 | 49 | 4 | 50 | 12 | 12 | 11 | 12 | 12 | | Min | | 47 | 6.4 | 383 | 1.5 | 4 | 0.24 | 45 | 59 | 93 | 21 | 10 | | Max | | 77 | 9.6 | 6890 | 129 | 7 | 9.7 | 880 | 1900 | 2000 | 620 | 120 | | Mean | | 62 | 7.7 | 4250 | 59.5 | 6 | 4.7 | 610 | 1387 | 1389 | 418 | 84 | | Geo Mean | | 62 | 7.6 | 3730 | 44.6 | 6 | 3.9 | 511 | 1124 | 1148 | 341 | 74 | | Median | | 62 | 7.7 | 4440 | 57.8 | 6 | 4.7 | 630 | 1550 | 1600 | 470 | 91 | | | | | | | | | | | | | | | Camp 13 Slough at Gauge Station (MER505) Location: Latitude 36°56'21", Longitude 120°45'22". In SE 1/4, SE 1/4, SW 1/4, Sec. 27, T.11S., R.11E. 150 feet north of CCID Main Canal, 6.4 miles west of Russel Avenue. 9.2 miles SE of Los Banos. 6.7 miles SW of South Dos Palos | | | Temp | | EC | Se | В | Cl | SO4 | HDNS | Ca | Mg | |----------|------|------|-----|------------------|------|------|------|------|------|------|------| | Date | Time | °F | pН | μ mhos/cm | μg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 920 | NA | 8.3 | 4510 | 77.8 | 6.9 | 590 | 1500 | 1090 | 280 | 94 | | 11/27/95 | 823 | 51 | 7.9 | 3440 | 57.4 | 4.8 | 440 | 1000 | 910 | 240 | 76 | | 12/28/95 | 1044 | 50 | 8.9 | 3760 | 75.0 | 5.3 | 430 | 1300 | NA | 270 | 105 | | 1/25/96 | 957 | 52 | 7.9 | 4660 | 84.6 | 6.9 | 570 | 1500 | 1030 | 270 | 89 | | 2/23/96 | NA | NA | NA | NA | NA | NA. | NA | NA | NA | NA | NA | | 3/28/96 | 850 | 64 | 8.1 | 3360 | 60.1 | 3.8 | 420 | 1100 | 830 | 210 | 75 | | 4/25/96 | 930 | 66 | 7.8 | 4340 | 88.8 | 6.6 | NA | NA | 1000 | 260 | 85 | | 5/30/96 | 912 | 68 | 7.8 | 3830 | 51.1 | 5.7 | 440 | 1100 | 920 | 240 | 78 | | 6/27/96 | 937 | 69 | 7.9 | 4000 | 55.2 | 6.1 | 450 | 1200 | 950 | 250 | 79 | | 7/25/96 | 855 | 80 | 7.7 | 3630 | 48.2 | 5.9 | 400 | 1100 | 850 | 220 | 74 | | 8/28/96 | 950 | 76 | 7.9 | 1650 | 15.4 | 1.4 | 190 | 350 | 350 | 88 | 32 | | 9/26/96 | 1055 | 70 | 8.4 | 338 | 0.8 | 0.13 | 31 | 35 | 72 | 15 | 8.4 | | | | | | | | | | | | | | | Count | | 10 | 11 | 11 | 11 | 11 | 10 | 10 | 10 | 11 | 11 | | Min | | 50 | 7.7 | 338 | 0.8 | 0.13 | 31 | 35 | 72 | 15 | 8 | | Max | | 80 | 8.9 | 4660 | 88.8 | 6.9 | 590 | 1500 | 1090 | 280 | 105 | | Mean | | 65 | 8.1 | 3411 | 55.9 | 4.9 | 396 | 1019 | 800 | 213 | 72 | | Geo Mean | | 64 | 8.1 | 2902 | 38.3 | 3.6 | 323 | 751 | 661 | 175 | 62 | | Median | | 67 | 7.9 | 3760 | 57.4 | 5.7 | 435 | 1100 | 915 | 240 | 78 | ### **Charleston Drain at CCID Main Canal (MER502)** Location: Latitude 36°56'59" Longitude 120°46'48". In NE 1/4, SE 1/4, NE 1/4, Sec. 29, T.11S., R.11E. North Side of CCID Main Canal, 8.7 miles S-SE of Los Banos. 7.9 miles W-SW of South Dos Palos. Temp EC Se Mo B Cl SO4 | | | Temp | , | EC | Se | Mo | В | Cl | SO4 | HDNS | CA | Mg | |--------------------|------------|----------|------------|--------------|--------------|------|------------|------|-------|-------|------|------| | Date | Time | °F | pН | μmhos/cm | μ g/L | μg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/6/95 | 740 | 62 | 7.9 | 949 | 9.0 | | 0.84 | | | | | | | 10/12/95 | 732 | 64 | 7.9 | 553 | 4.2 | | 0.48 | | | | | | | 10/18/95 | 740 | 64 | 6.6 | 1160 | 11.6 | | 1.0 | | | | | | | 10/27/95 | 845 | NA | 7.6 | 1250 | 14.4 | 2 | 1.3 | 160 | 320 | 390 | 97 | 36 | | 11/3/95 | 740 | 58 | 7.2 | 2140 | 26.4 | | 2.2 | | | | | | | 11/9/95 | 821 | 60 | 7.6 | 2180 | 27.2 | | 2.0 | | | | | | | 11/20/95 | 734 | 58 | 7.9 | 2210 | 24.8 | | 2.0 | | | | | | | 11/27/95 | 758 | 52 | 7.7 | 2110 | 25.1 | | 1.9 | 280 | 570 | 680 | 190 | 50 | | 12/8/95 | 850 | 58 | 7.4 | 2330 | 28.7 | | 2.1 | | | | | | | 12/18/95 | 830 | NA | 7.8 | 4800 | 77.1 | | 4.7 | | | | | | | 12/22/95 | 810 | 50 | 7.8 | 4950 | 79.2 | | 4.9 | | | | | | | 12/28/95 | 1025 | 52 | 8.4 | 5110 | 79.4 | | NA | 700 | 1900 | NA | 460 | 99 | | 1/4/96 | 900 | 52 | 7.3 | 5420 | 84.7 | | 5.1 | | | | | | | 1/11/96 | 833 | 52 | 7.5 | 5000 | 69.4 | | 4.3 | | | | | | | 1/18/96 | 951 | 52 | 7.7 | 5160 | 53.0 | | 5.4 | | | | | | | 1/25/96 | 936 | 52 | 7.4 | 4530 | 57.2 | 5 | 3.9 | 670 | 1300 | 1300 | 360 | 83 | | 2/2/96 | NA | NA | NA | NA | NA | | NA | | | | | | | 2/9/96 | 935 | 60 | 7.4 | 6370 | 91.0 | | 4.8 | | | | | | | 2/16/96 | NA | NA | NA | NA | NA | | NA | ~~. | | 3.7.1 | *** | 27.4 | | 2/23/96 | NA | NA | NA | NA | NA | | NA | NA | NA | NA | NA | NA | | 3/1/96 | NA | NA | NA | NA | NA | | NA | | | | | | | 3/8/96 | 840 | 58 | 7.6 | 4810 | 72.9 | | 4.0 | | | | | | | 3/18/96 | 1529 | 71 | 8.0 | 5280 | 92.6 | | 4.4 | | | | | | | 3/21/96 | 805 | 60 | NA | 5080 | 81.6 | | 4.2 | 560 | 1600 | 1.400 | 420 | 00 | | 3/28/96 | 830 | 62
50 | 7.5 | 4320 | 69.2 | | 3.6 | 560 | 1600 | 1400 | 430 | 90 | | 4/3/96 | 909 | 59 | 6.0 | 5390 | 93.7 | | 4.6 | | | | | | | 4/12/96 | 900 | 58
58 | 5.4 | 5290 | 84.2 | | 4.2 | | | | | | | 4/19/96 | 755 | 58 | 8.1 | 3340 | 68.8 | , | 3.3 | 720 | 1900 | 1700 | 530 | 97 | | 4/25/96 | 900 | 62 | 6.7 | 5530
5300 | 103 | 6 | 4.9
5.0 | 730 | 1800 | 1700 | 330 | 91 | | 5/3/96 | 750 | 62 | 6.1
7.8 | 5300 | 98.2
59.8 | | 2.9 | | | | | | | 5/10/96 | 840 | 62
64 | 7.8
7.5 | 3960
4400 | 60.3 | | 2.9
4.4 | | | | | | | 5/16/96
5/24/96 | 820 | 58 | 7.5
7.5 | 4890 | 81.3 | | 4.4 | | | | | | | 5/30/96 | 915
855 | 56
66 | 7.3
7.7 | 4180 | 69.2 | | 3.4 | 470 | 1400 | 1200 | 370 | 68 | | 5/50/90
6/6/96 | 945 | 72 | 7.7 | 2230 | 16.6 | | 2.1 | 470 | 1400 | 1200 | 370 | 00 | | 6/13/96 | 818 | 66 | 7.2
7.4 | 4010 | 75.2 | | 4.0 | | | | | | | 6/19/96 | 830 | 70 | 6.8 | 3950 | 63.6 | | 3.7 | | | | | | | 6/27/96 | 920 | 68 | 7.5 | 3940 | 64.8 | | 3.5 | 430 | 1400 | 1600 | 520 | 69 | | 7/2/96 | 855 | 76 | 5.7 | 3340 | 46.6 | | 2.6 | 450 | 1-100 | 1000 | 320 | ٥٧ | | 7/11/96 | 750 | 70
70 | 6.5 | 4300 | 81.5 | | 4.6 | | | | | | | 7/19/96 | 830 | 67 | 6.4 | 3740 | 61.3 | | 3.4 | | | | | | | 7/25/96 | 820 | 74 | 6.9 | 2780 | 43.0 | 5 | 2.3 | 290 | 890 | 800 | 240 | 48 | | 8/2/96 | 900 | 71 | 7.0 | 3390 | 39.0 | J | 3.8 | 270 | 0,0 | 000 | 2.0 | | | 8/8/96 | 855 | 70 | 5.8 | 2930 | 43.2 | | 2.6 | | | | | | | 8/15/96 | 800 | 74 | 6.0 | 2670 | 38.3 | | 2.4 | | | | | | | 8/23/96 | 825 | 73 | 7.2 | 2040 | 24.8 | | 1.8 | | | | | | | 8/28/96 | 920 | 71 | 7.2 | 2230 | 22.9 | | 2.1 | 530 | 1000 | 530 | 130 | 49 | | 9/5/96 | 903 | 64 | 6.7 | 2510 | 31.0 | | 2.8 | | | | | | | 9/12/96 | 1030 | 64 | 7.5 | 3730 | 47.2 | | 3.8 | | | | | | | 9/17/96 | 905 | 64 | 7.0 | 1860 | 20.1 | | 1.8 | | | | | | | 9/26/96 | 1040 | 68 | 7.9 | 1597 | 11.0 | | 1.1 | 220 | 350 | 320 | 86 | 26 | | Count | | 45 | 46 | 47 | 47 | 4 | 46 | 11 | 11 | 10 | 11 | 11 | | Min | | 50 | 5.4 | 553 | 4.2 | 2 | 0.48 | 160 | 320 | 320 | 86 | 26 | | Max | | 76 | 8.4 | 6370 | 103 | 6 | 5.4 | 730 | 1900 | 1700 | 530 | 99 | | Mean | | 63 | 7.2 | 3600 | 53.8 | 5 | 3.2 | 458 | 1139 | 992 | 310 | 65 | | Geo Mean | | 62 | 7.2 | 3220 | 44.0 | 4 | 2.9 | 412 | 979 | 857 | 259 | 60 | | Median | | 62 | 7.4 | 3940 | 59.8 | 5 | 3.5 | 470 | 1300 | 1000 | 360 | 68 | | | | | | | | | | | | | | | Almond Drive Drain (MER555) Location: Latitude 36°59'55", Longitude 120°49'00". In SW 1/4, SW 1/4, SW 1/4, Sec. 6, T.11S., R.11E. North side of Almond Drive, 1.1 miles east of Mercy Springs Drain, 100 feet east of CCID Main Canal. 4.7 miles south of Los Banos | | | Temp | | EC | Se | В | Cl | SO4 | HDNS | Ca | Mg | |----------|------|------|------------|-------------------|------|--------------|------|------|------|------|------| | Date | Time | °F | р
Н | μ mh os/cm | μg/L | μ g/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 830 | NA | 8.0 | 220 | 0.7 | 0.10 | 22 | 25 | 55 | 12 | 6 | | 11/27/95 | 740 | 52 | 7.6 | 447 | | | | | | | | | 12/28/95 | 957 | 52 | 8.1 | 2700 | | | | | | | | | 1/25/96 | 915 | 51 | 7.8 | 1650 | 8.4 | 1.7 | 210 | 390 | 380 | 74 | 48 | | 2/23/96 | 750 | 52 | 7.9 | 1690 | | | | | | | | | 3/28/96 | 800 | 64 | 7.2 | 1100 | | | | | | | | | 4/25/96 | 845 | 63 | 6.0 | 885 | 1.6 | 0.72 | 88 | 150 | 210 | 40 | 26 | | 5/30/96 | 835 | 66 | 7.7 | 642 | | | | | | | | | 6/27/96 | 850 | 68 | 7.8 | 965 | | | | | | | | | 7/25/96 | 800 | 80 | 8.0 | 362 | 1.3 | 0.21 | 37 | 46 | 100 | 22 | 11 | | 8/28/96 | 900 | 70 | 7.6 | 2230 | | | | | | | | | 9/26/96 | 1030 | 70 | 8.3 | 402 | Count | : | 11 | 12 | 12 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Min | L | 51 | 6.0 | 220 | 0.7 | 0.10 | 22 | 25 | 55 | 12 | 6 | | Max | | 80 | 8.3 | 2700 | 8.4 | 1.7 | 210 | 390 | 380 | 74 | 48 | | Mean | L | 63 | 7.7 | 1108 | 3.0 | 0.68 | 89 | 153 | 186 | 37 | 23 | | Geo Mean | L | 62 | 7.7 | 851 | 1.9 | 0.40 | 62 | 91 | 145 | 30 | 17 | | Median | ı | 64 | 7.8 | 925 | 1.5 | 0.47 | 63 | 98 | 155 | 31 | 19 | Rice Drain at Mallard Road (MER509) Location: Latitude 36°59'22" Longitude 120°42' 14". In NE 1/4, NW 1/4, SW 1/4, Sec. 7, T.11S., R.11E. South of Sante Fe Grade at Brito, 50 feet west of Mallard Road. 4.5 miles west of Dos Palos. | | | Temp | | EC | Se | В | CI | SO4 | HDNS | Ca | Mg | |----------|------|--------------------------|-----|-------------------|--------|------|------|--------|------|------|------| | Date | Time | ${}^{\circ}\!\mathrm{F}$ | pН | μ mh os/cm | μg/L ։ | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 1130 | NA | 7.8 | 3360 | 14.5 | 5.5 | 340 | 1100 | 630 | 140 | 68 | | 11/27/95 | 931 | 53 | 7.8 | 2050 | | | | | | | | | 12/28/95 | 1151 | 50 | 8.4 | 2540 | | | | | | | | | 1/25/96 | 1135 | 52 | 8.2 | 6300 | 28.4 | 15 | 650 | 2300 | 1100 | 240 | 120 | | 2/23/96 | 1105 | 57 | 7.8 | 4010 | | | | | | | | | 3/28/96 | 1015 | 60 | 7.7 | 2500 | | | | | | | | | 4/25/96 | 1050 | 67 | 8.4 | 2500 | 5.6 | 5.8 | 210 | 820 | 520 | 124 | 51 | | 5/30/96 | 1105 | 69 | 7.7 | 3450 | 4 | | | | | | | | 6/27/96 | 1210 | 70 | 7.9 | 3180 | | | | | | | | | 7/25/96 | 1110 | 80 | 7.9 | 2640 | 3.4 | 6.2 | 240 | 810 | 570 | 140 | 56 | | 8/28/96 | 1110 | 71 | 7.7 | 2210 | | | | | | | | | 9/26/96 | 1200 | 72 | 8.3 | 2430 | Count | | 11 | 12 | 12 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Min | | 50 | 7.7 | 2050 | 3.4 | 5.5 | 210 | 810 | 520 | 124 | 51 | | Max | | 80 | 8.4 | 6300 | 28.4 | 15 | 650 | 2300 | 1100 | 240 | 120 | | Mean | | 64 | 8.0 | 3098 | 13.0 | 8.1 | 360 | 1257.5 | 705 | 161 | 74 | | Geo Mean | | 63 | 8.0 | 2947 | 9.4 | 7.4 | 325 | 1139 | 673 | 155 | 69 | | Median | | 67 | 7.9 | 2590 | 10.1 | 6.0 | 290 | 960 | 600 | 140 | 62 | ## Salt Slough Ditch at Hereford Road (MER528) Location: Latitude 37°08'30" Longitude 120°45'17". In NW 1/4, NE 1/4, NW 1/4, Sec. 22, T.9S., R.11E. 3.0 miles north on Hereford Road from Henry Miller Road. | | | Temp | | EC | Se | В | Cl | SO4 | HDNS | Ca | Mg | |----------|------|------|-----|----------|------|------|------|------|------|------|------| | Date | Time | °F | рH | μmhos/cm | μg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 855 | 60 | 7.8 | 515 | 0.6 | 0.20 | 77 | 63 | 130 | 29 | 13 | | 11/27/95 | 1105 | 54 | 8.1 | 735 | | | | | | | | | 12/28/95 | 1254 | 54 | 8.5 | 1260 | | | | | | | | | 1/25/96 | 1250 | 56 | 7.8 | 962 | 1.7 | 0.34 | 140 | 130 | 210 | 51 | 20 | | 2/23/96 | 1206 | 58 | 7.7 | 898 | | | | | | | | | 3/28/96 | 1155 | 66 | 7.6 | 741 | | | | | | | | | 4/25/96 | 1235 | 70 | 7.9 | 1150 | 0.6 | 0.27 | 160 | 140 | 290 | 73 | 27 | | 5/30/96 | 1229 | 70 | 7.4 | 642 | | | | | | | | | 6/27/96 | 1345 | 74 | 8.1 | 951 | | | | | | | | | 7/25/96 | 1235 | 84 | 7.8 | 708 | 1.0 | 0.26 | 87 | 76 | 190 | 45 | 18 | | 8/28/96 | 1220 | 74 | 7.8 | 718 | | | | | | | | | 9/26/96 | 955 | 70 | 8.0 | 746 | Count | | 12 | 12 | 12 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Min | | 54 | 7.4 | 515 | 0.6 | 0.20 | 77 | 63 | 130 | 29 | 13 | | Max | | 84 | 8.5 | 1260 | 1.7 | 0.34 | 160 | 140 | 290 | 73 | 27 | | Mean | | 66 | 7.9 | 836 | 1.0 | 0.27 | 116 | 102 | 205 | 50 | 20 | | Geo Mean | | 65 | 7.9 | 811 | 0.9 | 0.26 | 111 | 97 | 197 | 47 | 19 | | Median | | 68 | 7.8 | 744 | 0.8 | 0.27 | 114 | 103 | 200 | 48 | 19 | CCID Main at Russel Avenue (MER510) Location: Latitude 36°55'28", Longitude 120°39'11". In SE 1/4, SE 1/4, SE 1/4, Sec. 33, T.11S., R.12E. 2.7 miles south of Dos Palos. | | | Temp | | EC | Se | В | Cl | SO4 | HDNS | Ca | Mg | |----------|------|------|-----|-------------------|-------|--------|------|------|------|------|------| | Date | Time | °F | pН | μ mh os/cm | μg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 1050 | NA | 8.4 | 243 | 1.1 | 0.12 | 25 | 27 | 62 | 13 | 7.2 | | 11/27/95 | 840 | 56 | 8.6 | 372 | | | | | | | | | 12/28/95 | 1103 | 50 | 7.8 | 889 | | | | | | | | | 1/25/96 | 1023 | 51 | 8.2 | 1300 | 5.2 | 1.3 | 110 | 380 | 350 | 96 | 27 | | 2/23/96 | 955 | 59 | 8.1 | 558 | | | | | | | | | 3/28/96 | 930 | 62 | 8.4 | 608 | | | | | | | | | 4/25/96 | 1000 | 66 | 8.8 | 56 | < 0.4 | < 0.05 | 2 | 1.8 | 25 | 5.1 | 2.9 | | 5/30/96 | 930 | 70 | 8.1 | 595 | | | | | | | | | 6/27/96 | 1005 | 72 | 8.5 | NA | | | | | | | | | 7/25/96 | 920 | 82 | 8.3 | 228 | 0.7 | 0.42 | 21 | 19 | 110 | 26 | 12 | | 8/28/96 | 1010 | 78 | 8.0 | 618 | | | | | | | | | 9/26/96 | 1110 | 70 | 8.3 | 318 | Count | | 11 | 12 | 11 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | | Min | | 50 | 7.8 | 56 | < 0.4 | < 0.05 | 2 | 2 | 25 | 5 | 3 | | Max | | 82 | 8.8 | 1300 | 5.2 | 1.3 | 110 | 380 | 350 | 96 | 27 | | Mean | | 65 | 8.3 | 526 | 2.3 | 0.61 | 40 | 107 | 137 | 35 | 12 | | Geo Mean | | 64 | 8.3 | 409 | 1.6 | 0.40 | 18 | 24 | 88 | 20 | 9 | | Median | | 66 | 8.3 | 558 | 1.1 | 0.42 | 23 | 23 | 86 | 20 | 10 | Santa Fe Canal at Henry Miller Road (MER519) Location: Latitude 37°05'59", Longitude 120°49'44". In NE 1/4, NE 1/4, Sec. 1, T.10S., R.10E. 0.3 miles east of Lander Avenue. 3.0 miles north of Gustine. | | | Temp | | EC | Se | В | Cl | SO4 | HDNS | Ca | Mg | |----------|------|------|-----|------------------|------|--------|------|------|------|------|------| | Date | Time | °F | pН | μ mhos/cm | μg/L | · mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 755 | 60 | 7.6 | 188 | 0.6 | 0.10 | 20 | 20 | 49 | 10 | 5.8 | | 11/27/95 | 1021 | 56 | 8.4 | 487 | 1.3 | 0.22 | 58 | 64 | 110 | 25 | 12 | | 12/28/95 | 1220 | 52 | 8.9 | 696 | 2.7 | 0.41 | 86 | 120 | NA | 40 | 16 | | 1/25/96 | 1200 | 54 | 8.4 | 659 | 2.4 | 0.40 | 75 | 100 | 150 | 36 | 15 | | 2/23/96 | 1134 | 60 | 8.5 | 1450 | 4.7 | 1.3 | 180 | 340 | 310 | 73 | 30 | | 3/28/96 | 1125 | 67 | 8.4 | 766 | 4.3 | 0.64 | 80 | 170 | 130 | 27 | 16 | | 4/25/96 | 1135 | 70 | 8.1 | 456 | 1.2 | 0.43 | 41 | 73 | 110 | 21 | 14 | | 5/30/96 | 1155 | 74 | 8.8 | 537 | 1.2 | 0.49 | 54 | 91 | 120 | 25 | 15 | | 6/27/96 | 1250 | 82 | 8.7 | 900 | 2.3 | 0.77 | 97 | 160 | 220 | 46 | 25 | | 7/25/96 | 1135 | 84 | 7.8 | 988 | 2.0 | 0.95 | 110 | 160 | 280 | 56 | 33 | | 8/28/96 | 1138 | 76 | 8.0 | 556 | 1.5 | 0.30 | 58 | 70 | 120 | 24 | 15 | | 9/26/96 | 920 | 69 | 8.5 | 421 | 1.3 | 0.23 | 42 | 50 | 93 | 19 | 11 | | | | | | | | | | | | | | | Count | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 11 | 12 | 12 | | Min | | 52 | 7.6 | 188 | 0.6 | 0.10 | 20 | 20 | 49 | 10 | 6 | | Max | | 84 | 8.9 | 1450 | 4.7 | 1.3 | 180 | 340 | 310 | 73 | 33 | | Mean | | 67 | 8.3 | 675 | 2.1 | 0.52 | 75 | 118 | 154 | 34 | 17 | | Geo Mean | | 66 | 8.3 | 604 | 1.8 | 0.42 | 65 | 95 | 136 | 30 | 16 | | Median | | 68 | 8.4 | 608 | 1.8 | 0.42 | 67 | 96 | 120 | 26 | 15 | San Luis Canal at Henry Miller Road (MER532) Location: Latitude 37 06' 00" Longitude 120 49' 13". In SE 1/4, SW 1/4, SE 1/4, Section 36, T10s, R10E. The site is 3 miles northeast of Los Banos at the Los Banos Wildlife Refuge. | | | | Temp | | EC | Se | В | CI | SO4 | HDNS | Ca | Mg | |---|----------|------|------|-----|-------------------|--------------|--------|------|------|------|------|------| | | Date | Time | °F | pН | μ mh os/cm | μ g/L | · mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | _ | 10/27/95 | 815 | 60 | 7.5 | 196 | 0.8 | 0.10 | 20 | 22 | 52 | 11 | 5.9 | | | 11/27/95 | 1031 | 56 | 8.3 | 507 | 1.6 | 0.27 | 61 | 69 | 120 | 26 | 13 | | | 12/28/95 | 1227 | 52 | 8.4 | 918 | 6.6 | 0.69 | 140 | 180 | NA | 54 | 19 | | | 1/25/96 | 1220 | 52 | 8.0 | 1120 | 12.0 | 0.73 | 130 | 230 | 280 | 76 | 22 | | | 2/23/96 | 1142 | 58 | 7.9 | 3560 | 40.8 | 4.4 | 400 | 1000 | 750 | 189 | 68 | | | 3/28/96 | 1130 | 66 | 8.0 | 790 | 5.3 | 0.61 | 80 | 190 | 140 | 28 | 17 | | | 4/25/96 | 1150 | 68 | 7.9 | 505 | 1.5 | 0.49 | NA | NA | 110 | 23 | 14 | | | 5/30/96 | 1205 | 70 | 7.8 | 660 | 1.6 | 0.54 | 74 | 100 | 160 | 33 | 18 | | | 6/27/96 | 1305 | 72 | 8.4 | 979 | 3.0 | 0.91 | 100 | 180 | 240 | 48 | 28 | | | 7/25/96 | 1153 | 84 | 7.9 | 565 | 1.8 | 0.50 | 57 | 83 | 160 | 32 | 20 | | | 8/28/96 | 1150 | 74 | 7.8 | 568 | 1.8 | 0.31 | 59 | 72 | 120 | 240 | 150 | | _ | 9/26/96 | 930 | 70 | 8.4 | 646 | 1.5 | 0.25 | 48 | 57 | 100 | 22 | 11 | | | | | | | | | | | | | | | | | Count | | 12 | 12 | 12 | 12 | 12 | 11 | 11 | 11 | 12 | 12 | | | Min | | 52 | 7.5 | 196 | 0.8 | 0.10 | 20 | 22 | 52 | 11 | 6 | | | Max | | 84 | 8.4 | 3560 | 40.8 | 4.4 | 400 | 1000 | 750 | 240 | 150 | | | Mean | | 65 | 8.0 | . 918 | 6.5 | 0.82 | 106 | 198 | 203 | 65 | 32 | | | Geo Mean | | 65 | 8.0 | 720 | 3.1 | 0.51 | 80 | 120 | 158 | 43 | 21 | | | Median | | 67 | 8.0 | 653 | 1.8 | 0.52 | 74 | 100 | 140 | 33 | 19 | Porter-Blake Bypass (MER548) Location: Latitude 37°05'58.5", Longitude 120°49'14.5". In NW 1/4, Sec. 1, T.10S., R.10E. 7.5 miles east of the intersection of Henry Miller and Mercy Springs Roads. 2 miles north of Los Banos. | | | Temp | | EC | Se | В | Cl |
SO4 | HDNS | Ca | Mg | |----------|------|------|-----|------------------|-------|------|------|------|------|------|------| | Date | Time | °F | pН | μ mhos/cm | μg/L_ | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 830 | 60 | 7.3 | 1738 | 26.6 | 2.3 | 210 | 500 | 370 | 94 | 34 | | 11/27/95 | 1044 | 58 | 7.9 | 2200 | 23.9 | 2.8 | 250 | 620 | 600 | 150 | 56 | | 12/28/95 | 1238 | 52 | 8.5 | 2600 | 33.2 | 3.6 | 310 | 750 | NA | 150 | 58 | | 1/25/96 | 1235 | 56 | 7.8 | 3390 | 36.2 | 4.7 | 420 | 940 | 720 | 180 | 65 | | 2/23/96 | 1152 | 58 | 7.8 | 3680 | 44.8 | 4.6 | 410 | 1100 | 760 | 194 | 68 | | 3/28/96 | 1140 | 66 | 8.1 | 3300 | 34.6 | 4.1 | 390 | 970 | 730 | 180 | 71 | | 4/25/96 | 1205 | 71 | 7.5 | 3800 | 66.3 | 5.3 | NA | NA | 870 | 228 | 73 | | 5/30/96 | 1210 | 69 | 8.0 | 3310 | 48.5 | 4.7 | 390 | 930 | 820 | 220 | 66 | | 6/27/96 | 1320 | 72 | 7.9 | 3480 | 44.9 | 4.9 | 370 | 1000 | 760 | 200 | 64 | | 7/25/96 | 1215 | 84 | 7.8 | 3010 | 39.8 | 5.1 | 330 | 920 | 730 | 190 | 62 | | 8/28/96 | 1200 | 74 | 7.9 | 2890 | 39.4 | 3.6 | 280 | 770 | 580 | 140 | 56 | | 9/26/96 | 940 | 70 | 8.3 | 532 | 2.1 | 0.32 | 56 | 71 | 110 | 25 | 12 | | | | | | | | | | | | | | | Count | | 12 | 12 | 12 | 12 | 12 | 11 | 11 | 11 | 12 | 12 | | Min | | 52 | 7.3 | 532 | 2.1 | 0.32 | 56 | 71 | 110 | 25 | 12 | | Max | | 84 | 8.5 | 3800 | 66.3 | 5.3 | 420 | 1100 | 870 | 228 | 73 | | Mean | | 66 | 7.9 | 2828 | 36.7 | 3.8 | 311 | 779 | 641 | 163 | 57 | | Geo Mean | | 65 | 7.9 | 2570 | 30.2 | 3.3 | 280 | 663 | 574 | 145 | 53 | | Median | | 68 | 7.9 | 3155 | 37.8 | 4.4 | 330 | 920 | 730 | 180 | 63 | Mud Slough at Newman Gun Club (MER551) Location: Latitude 37°18"33", Longitude 120°57'18". In NW 1/4, NW 1/4, SW 1/4, Sec. 23, T.7S., R.9E. 1.7 miles north of Santa Fe Grade, 1.2 miles north of Highway 140. 4.2 miles NE of Gustine. | | | Temp | | EC | Se | В | Cl | SO4 | HDNS | Ca | Mg | |----------|------|------|-----|----------|--------------|------|------|------|------|------|------| | Date | Time | °F | pН | μmhos/cm | μ g/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/27/95 | 1430 | NA | 7.9 | 758 | 0.8 | 0.50 | 89 | 110 | 170 | 36 | 20 | | 11/27/95 | 940 | 52 | 8.1 | 1130 | 0.7 | 0.78 | 150 | 160 | 220 | 41 | 28 | | 12/28/95 | 1125 | 51 | 8.1 | 1650 | 0.8 | 1.1 | 230 | 270 | 290 | 52 | 39 | | 1/25/96 | 950 | 46 | 7.9 | 1820 | 0.6 | 1.2 | 260 | 320 | 340 | 62 | 44 | | 2/23/96 | 1010 | 47 | 7.8 | 1080 | 0.7 | 0.70 | 120 | 170 | 230 | 43 | 29 | | 3/28/96 | 1050 | 62 | 7.7 | 1750 | 1.2 | 1.7 | 280 | 340 | 380 | 70 | 50 | | 4/25/96 | 1140 | 66 | 8.1 | 3540 | 1.4 | 2.2 | 540 | 740 | 570 | 91 | 83 | | 5/30/96 | 1045 | 72 | 7.9 | 1690 | 2.2 | 1.0 | 220 | 320 | 290 | 54 | 37 | | 6/27/96 | 1110 | 70 | 8.4 | 3040 | 1.3 | 1.5 | 500 | 590 | 530 | 90 | 73 | | 7/25/96 | 1130 | 85 | 8.6 | 2590 | 1.2 | 1.7 | 340 | 490 | 530 | 93 | 71 | | 8/28/96 | 1141 | 78 | 8.1 | 2750 | 1.3 | 1.7 | 430 | 580 | 560 | 92 | 79 | | 9/26/96 | 1105 | 70 | 7.4 | 5280 | 15.6 | 8.4 | 610 | 1800 | 950 | 200 | 110 | | | | | | | | | | | | | | | Count | | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Min | | 46 | 7.4 | 758 | 0.6 | 0.50 | 89 | 110 | 170 | 36 | 20 | | Max | | 85 | 8.6 | 5280 | 15.6 | 8.4 | 610 | 1800 | 950 | 200 | 110 | | Mean | | 64 | 8.0 | 2260 | 2.3 | 1.9 | 314 | 491 | 422 | 77 | 55 | | Geo Mean | | 62 | 8.0 | 1970 | 1.3 | 1.4 | 269 | 369 | 376 | 69 | 49 | | Median | | 66 | 8.0 | 1780 | 1.2 | 1.4 | 270 | 330 | 360 | 66 | 47 | # Mud Slough (north) at San Luis Drain (MER542) Location: Latitude 37°19'50", Longitude 120°57"03". In NW 1/4, NE 1/4, NW 1/4, Sec. 14, T.7S., R.9E. 5.0 miles east of Gustine, 3.5 miles SE of Highway 140. Located within Kesterson N. W. R. | (| Gustine, | | s SE of | f Highway 140.
EC | Located
Se | Within I | Kesterso:
Cr | n N. W. !
Cu | R.
Ni | Pb | Zn | В | Cl | SO4 | HDNS | Ca | Mg | |--------------------|--------------|------------|------------|----------------------|---------------|----------|-----------------|-----------------|-----------------|-----|----|-------------|------|------|------|-----------|-------| | Date | Time | Temp
°F | рH | μmhos/cm | | IVIU | <u></u> | · μg/L - | 141 | 10 | | mg/L | mg/L | mg/L | | mg/L_ | mg/L_ | | 10/6/95 | 1120 | 69 | 8.3 | 1130 | 1.2 | | | W.C. 3.5 | | | | 0.66 | | | | | | | 10/0/95 | 1018 | 62 | 7.8 | 1200 | 1.1 | | | | | | | 0.91 | | | | | | | 10/12/95 | 1030 | 69 | 7.8 | 632 | 1.1 | | | | | | | 0.45 | | | | | | | 10/27/95 | 1310 | NA | 7.7 | 769 | 0.6 | 7 | 2 | 4 | 7 | <5 | <1 | 0.60 | 91 | 100 | 170 | 34 | 20 | | 11/3/95 | 1045 | 62 | 8.1 | 904 | 0.9 | • | _ | • | • | | | 0.76 | | | | | | | 11/9/95 | 1050 | 64 | 7.7 | 906 | 0.5 | | | | | | | 0.69 | | | | | | | 11/20/95 | 1152 | 64 | 7.6 | 1060 | 0.4 | | | | | | | 0.81 | | | | | | | 11/27/95 | 1156 | 54 | 8.1 | 1220 | 0.5 | | | | | | | 0.92 | 160 | 180 | 380 | 90 | 39 | | 12/8/95 | 1332 | 60 | 8.1 | 1190 | 0.4 | | | | | | | 0.85 | | | | | | | 12/18/95 | 1020 | NA | 8.9 | 1200 | 0.6 | | | | | | | 0.88 | | | | | | | 12/22/95 | 1230 | 50 | 7.9 | 1230 | 0.8 | | | | | | | 0.91 | | | | | | | 12/28/95 | 1332 | 52 | 8.2 | 1540 | 0.7 | | | | | | | 0.97 | 220 | 260 | NA | 44 | 33 | | 1/4/96 | 1230 | 55 | 7.9 | 1930 | 0.7 | | | | | | | 1.4 | | | | | | | 1/11/96 | 1114 | 52 | 7.9 | 1980 | 0.8 | | | | | | | 1.3 | | | | | | | 1/18/96 | 1320 | 51 | 8.1 | 1710 | 0.8 | | | | | | | 1.2 | | | | | | | 1/25/96 | 1345 | 54 | 7.8 | 1690 | 0.5 | 6 | 6 | 2 | 10 | <5 | <1 | 1.2 | 240 | 250 | 270 | 52 | 35 | | 2/2/96 | 1235 | 57 | 8.0 | 1210 | 0.7 | | | | | | | 0.87 | • | | | | | | 2/9/96 | NA | NA | NA | NA | NA | | | | | | | NA | | | | | | | 2/16/96 | 951 | 62 | 7.5 | 1880 | 0.5 | | | | | | | 0.73 | | | | | *" | | 2/23/96 | 1300 | 60 | 7.8 | 880 | < 0.4 | | | | | | | 0.69 | 91 | 120 | 200 | 37 | 25 | | 3/1/96 | 1310 | 62 | 8.1 | 1160 | 0.5 | | | | | | | 1.0 | | | | | | | 3/8/96 | 1015 | 58 | 8.0 | 1070 | 0.6 | | | | | | | 0.86 | | | | | | | 3/18/96 | 1145 | 72 | 8.4 | 1950 | 0.7 | | | | | | | 1.5 | | | | | | | 3/21/96 | 1035 | 68 | 8.1 | 2160 | 0.7 | | | | | | | 1.8 | 222 | 200 | 070 | 60 | 50 | | 3/28/96 | 1245 | 66 | 8.2 | 2270 | 1.0 | | | | | | | 2.3 | 330 | 380 | 370 | 62 | 52 | | 4/3/96 | 1438 | 64 | 7.5 | 2180 | 1.4 | | | | | | | 1.8 | | | | | | | 4/12/96 | 1356 | 66 | 7.8 | 3440 | 7.1 | | | | | | | 4.1 | | | | | | | 4/19/96 | 1120 | 62 | 8.0 | 3640 | 0.8 | 4.0 | | - | | . 5 | 11 | 3.2 | 270 | 490 | 420 | 70 | 60 | | 4/25/96 | 1320 | 73 | 8.3 | 2670 | 0.9 | 10 | 8 | 7 | 9 | <5 | 11 | 1.9 | 370 | 490 | 420 | 70 | 00 | | 5/3/96 | 1216 | 75 | 7.7 | 3820 | 0.8 | | | | | | | 3.1 | | | | | | | 5/10/96 | 1100 | 67 | 8.1 | 1510 | 1.2 | | | | | | | 0.95
1.5 | | | | | | | 5/16/96 | 1250 | 66 | 7.9 | 2560 | 1.5 | | | | | | | 1.1 | | | | | | | 5/24/96 | 1145 | 66 | 8.1 | 1420 | 1.5 | | | | | | | 0.87 | 170 | 250 | 220 | 40 | 28 | | 5/30/96 | 1335 | 76 | 8.1 | 1310 | 0.7 | | | | | | | 0.49 | 170 | 230 | 220 | 40 | 20 | | 6/6/96 | 1300 | 88 | 7.8 | 588
1610 | 2.0
1.1 | | | | | | | 1.2 | | | | | | | 6/13/96 | 1224
1025 | 78
74 | 8.2
7.9 | 1610
2520 | 0.7 | | | | | | | 1.9 | | | | | | | 6/19/96
6/27/96 | 1445 | 80 | 8.1 | 3250 | 1.2 | | | | | | | 2.1 | 440 | 720 | 500 | 81 | 72 | | 7/2/96 | 1125 | 86 | 7.3 | 2360 | 1.8 | | | | | | | 1.7 | 110 | | | | | | 7/11/96 | 1204 | 82 | 7.8 | 2520 | 2.1 | | | | | | | 1.9 | | | | | | | 7/19/96 | 1245 | 78 | 8.3 | 3190 | 1.3 | | | | | | | 2.1 | | | | | | | 7/25/96 | 1345 | 90 | 8.3 | 2020 | 1.4 | 11 | 12 | 6 | 15 | <5 | 16 | 1.5 | 260 | 390 | 370 | 65 | 51 | | 8/2/96 | 1200 | 82 | 8.2 | 1650 | 1.0 | | | - | | | | 1.2 | | | | | | | 8/8/96 | 1235 | 82 | 7.9 | 2900 | 1.1 | | | | | | | 1.8 | | | | | | | 8/15/96 | 1045 | 79 | 8.0 | 2460 | 1.2 | | | | | | | 1.5 | | | | | | | 8/23/96 | 1200 | 80 | 8.1 | 2250 | 1.2 | | | | | | | 1.4 | | | | | | | 8/28/96 | 1320 | 80 | 8.3 | 2110 | 1.6 | | | | | | | 1.1 | 230 | 350 | 300 | 51 | 43 | | 9/5/96 | 1306 | 72 | 8.1 | 1040 | 1.7 | | | | | | | 0.71 | | | | | | | 9/12/96 | 945 | 66 | 7.7 | 2580 | 3.4 | | | | | | | 2.1 | | | | | | | 9/17/96 | 1330 | 76 | 8.5 | 749 | 1.3 | | | | | | | 0.58 | | | | | | | 9/26/96 | 830 | 69 | 8.2 | 5530 | 11.8 | | | w | | | | 8.7 | 600 | 1900 | 890 | 192 | 100 | | | | | | | | | - | | | | | | | | | | | | | Count | 48 | 50 | 50 | 49 | 4 | 4 | 4 | 4 | 4 | 4 | 50 | 12 | 12 | 11 | 12 | 12 | | | Min | | 7.3 | 588 | < 0.4 | 6 | 2 | 2 | 7 | <5 | 11 | 0.45 | 91 | 100 | 170 | 34 | 20 | | | Max | | 8.9 | 5530 | 11.8 | 11 | 12 | 7 | 15 | <5 | 16 | 8.7 | 600 | 1900 | 890 | 192 | 100 | | | Mean | | 8.0 | 1890 | 1.4 | 9 | 7 | 5 | 10 | <5 | 7 | 1.5 | 267 | 449 | 372 | 68 | 47 | | G | eo Mean | | 8.0 | 1680 | 1.0 | 8 | 6 | 4 | 10 | <5 | 3 | 1.2 | 231 | 322 | 335 | 60 | 42 | | | Median | . 67 | 8.1 | 1700 | 1.0 | 9 | . 7 | 5 | 10 | <5 | 6 | 1.2 | 235 | 305 | 370 | 57 | 41 | # Los Banos Creek at State Highway 140 (MER554) Location: Latitude 37°16'35", Longitude 120°57'14". In NE 1/4, SW 1/4, SW 1/4, Sec., 35, T.7S., R.9E. South side of highway 140, 2.9 miles NE of Gustine. | Date | Time | Temp
°F | рH | EC
μmhos/cm | Se
μg/L | B
· mg/L_ | Cl
mg/L | SO4
mg/L | HDNS
mg/L | Ca
mg/L | Mg
mg/L | |----------|------|------------|-----|----------------|------------|--------------|------------|-------------|--------------|------------|------------| | 10/27/95 | 1025 | 58 | 7.7 | 1340 | 0.5 | 0.60 | 210 | 130 | 250 | 48 | 31 | | 11/27/95 | 903 | 54 | 8.0 | 709 | | | | | | | | | 12/28/95 | 1045 | 50 | 8.0 | 1460 | | | | | | | | | 1/25/96 | 756 | 45 | 6.7 | 1450 | < 0.4 | 1.0 | 200 | 200 | 260 | 46 | 35 | | 2/23/96 | 914 | 47 | 7.6 | 515 | | | | | | | | | 3/28/96 | 925 | 61 | 6.5 | 509 | | | | | | | | | 4/25/96 | 930 | 62 | 6.8 | 3350 | 0.7 | 3.0 | 450 | 670 | 600 | 94 | 88 | | 5/30/96 | 1109 | 73 | 7.9 | 850 | | | | | | | | | 6/27/96 | 1145 | 71 | 8.4 | 1250 | | | | | | | | | 7/25/96 | 1205 | 84 | 8.5 | 1530 | 1.2 | 1.4 | 180 | 240 | 350 | 64 | 45 | | 8/28/96 | 1203 | 76 | 8.6 | 1600 | | | | | | | |
| 9/26/96 | 1020 | 68 | 7.5 | 548 | Count | | 12 | 12 | 12 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | | Min | | 45 | 6.5 | 509 | <0.4 | 0.60 | 180 | 130 | 250 | 46 | 31 | | Max | | 84 | 8.6 | 3350 | 1.2 | 3.0 | 450 | 670 | 600 | 94 | 88 | | Mean | | 62 | 7.7 | 1259 | 0.6 | 1.5 | 260 | 310 | 365 | 63 | 50 | | Geo Mean | | 61 | 7.7 | 1080 | 0.5 | 1.3 | 242 | 254 | 342 | 60 | 46 | | Median | | 61 | 7.8 | 1300 | 0.6 | 1.2 | 205 | 220 | 305 | 56 | 40 | ### Salt Slough at Lander Avenue (State Highway 165) (MER531) Location: Latitude 37°14'55", Longitude 120°51'04". In NW 1/4, SE 1/4, SE 1/4, Sec. 10, T.8S., R.10E. 13.0 miles north of Los Banos. 5.0 miles south of Highway 140. | | | Temp | | EC | Se | Mo | \mathbf{Cr} | Cu | Ni | Pb | Zn | В | Cl | SO4 | HDNS | Ca | Mg | |----------------------|-------------------|-----------|------------|--------------|--------------|---------|---------------|----------------|----------|----------|---------|------------|-----------|------------|------|-----------|-------| | <u>Date</u> | Time | °F | pН | μmhos/cm | | | | - μ g/L | | | | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L_ | | 10/6/95 | 1210 | 70 | 8.2 | 1010 | 1.1 | | | | | | | 0.47 | | | | | | | 10/12/95 | 1040 | 68 | 7.8 | 1070 | 1.0 | | | | | | | 0.58 | | | | | | | 10/18/95 | 1125 | 70 | 7.1 | 1300 | 6.8 | | | | | _ | | 1.3 | 450 | 240 | 0.60 | 60 | 06 | | 10/25/96 | 930 | 62 | 7.6 | 1360 | 12.4 | 6 | 12 | 6 | 15 | <5 | 16 | 1.3 | 170 | 310 | 260 | 63 | 26 | | 11/3/95 | 1241 | 64 | 7.9 | 1590 | 7.7 | | | | | | | 1.3 | | | | | | | 11/9/95 | 955 | 64 | 8.1 | 1370 | 1.9 | | | | | | | 0.88 | | | | | | | 11/20/95 | 1029 | 63 | 7.8 | 1930 | 10.6 | | | | | | | 2.0 | 240 | 410 | 200 | 90 | 39 | | 11/27/95 | 825 | 54 | 8.0 | 1810 | 10.9 | | | | | | | 1.7
1.8 | 240 | 410 | 380 | 90 | 39 | | 12/8/95 | 1132 | 60
NTA | 7.9 | 1920 | 12.8 | | | | | | | 2.1 | | | | | | | 12/18/95
12/22/95 | 1230 | NA | 7.8 | 1920
2010 | 13.1
13.4 | | | | | | | 2.5 | | | | | | | 12/28/95 | 1055
1005 | 50
51 | 7.9
7.7 | 2380 | 19.3 | | | | | | | 2.4 | 330 | 560 | 490 | 115 | 49 | | 1/4/96 | 1300 | 55 | 7.7 | 2490 | 5.2 | | | | | | | 2.2 | 220 | | ., . | | | | 1/11/96 | 1016 | 52 | 7.7 | 2850 | 10.0 | | | | | | | 2.5 | | | | | | | 1/18/96 | 1353 | 52 | 7.9 | 2690 | 33.3 | | | | | | | 3.0 | | | | | | | 1/25/96 | 836 | 46 | 7.6 | 2430 | 19.5 | 9 | NA | NA | NA | NA | NA | 2.7 | 320 | 590 | 500 | 118 | 49 | | 2/2/96 | 1320 | 56 | 7.8 | 2010 | 13.6 | | | | | | | NA | | | | | | | 2/9/96 | NA | NA | NA | NA | NA | | | | | | | NA | | | | | | | 2/16/96 | 1030 | 62 | 7.6 | 2580 | 22.7 | | | | | | | 2.7 | | | | | | | 2/23/96 | 830 | 47 | 6.9 | 2340 | 18.6 | | | | | | | 1.1 | 300 | 570 | 240 | 59 | 23 | | 3/1/96 | 1410 | 58 | 7.8 | 2130 | 14.5 | | | | | | | 2.4 | | | | | | | 3/8/96 | 1035 | 62 | 7.7 | 2250 | 15.8 | | | | | | | 2.0 | | | | | | | 3/18/96 | 1325 | 68 | 7.4 | 2220 | 16.9 | | | | | | | 1.9 | | | | | | | 3/21/96 | 1125 | 68 | NA | 2120 | 17.8 | | | | | | | 1.9 | | | | | | | 3/28/96 | 950 | 61 | 7.4 | 1720 | 11.6 | | | | | | | 1.7 | 280 | 430 | 450 | 102 | 45 | | 4/3/96 | 1455 | 67 | 7.6 | 1920 | 17.2 | | | | | | | 1.8 | | | | | | | 4/12/96 | 1146 | 64 | 7.8 | 2170 | 18.0 | | | | | | | 1.8 | | | | | | | 4/19/96 | 1140 | 62 | 8.0 | 1840 | 20.3 | | | | | _ | | 2.3 | | 450 | 500 | 444 | c. | | 4/25/96 | 1030 | 65 | 7.7 | 2850 | 31.6 | 9 | 12 | 9 | 11 | <5 | 26 | 2.7 | 370 | 670 | 580 | 144 | 54 | | 5/3/96 | 1015 | 72 | 7.9 | 3000 | 33.5 | | | | | | | 3.5 | | | | | | | 5/10/96 | 1115 | 66 | 7.7 | 2110 | 19.4 | | | | | | | 1.9 | | | | | | | 5/16/96 | 1350 | 70 | 7.7 | 2320 | 23.0 | | | | | | | 2.0 | | | | | | | 5/24/96 | 1220 | 64 | 7.8 | 2030 | 18.7 | | | | | | | 2.1
2.6 | 300 | 570 | 520 | 130 | 47 | | 5/30/96 | 1200 | 70 | 7.6
7.8 | 2330
2610 | 22.0
27.5 | | | | | | | 3.1 | 300 | 370 | 320 | 150 | 77 | | 6/6/96
6/13/96 | 1230
1055 | 80
75 | 7.8 | 2120 | 18.8 | | | | | | | 1.9 | | | | | | | 6/19/96 | 1050 | 75
75 | 7.8 | 2020 | 20.6 | | | | | | | 2.3 | | | | | | | 6/27/96 | 1215 | 68 | 7.7 | 2650 | 25.8 | | | | | | | 2.7 | 360 | 660 | 510 | 130 | 46 | | 7/2/96 | 1030 | 83 | 7.4 | 2210 | 20.4 | | | | | | | 2.5 | | | | | | | 7/11/96 | 1050 | 77 | 7.6 | 2160 | 19.6 | | | | | | | 2.7 | | | | | | | 7/19/96 | 1040 | 74 | 7.5 | 2210 | 19.4 | | | | | | | 2.6 | | | | | | | 7/25/96 | 1300 | 84 | 7.9 | 2020 | 17.3 | 10 | 15 | 8 | 14 | <5 | 26 | 2.5 | 220 | 480 | 450 | 110 | 42 | | 8/2/96 | 1240 | 82 | 7.8 | 1830 | 15.6 | | | | | | | 2.3 | | | | | | | 8/8/96 | 1315 | 78 | 8.2 | 1560 | 13.4 | | | | | | | 1.7 | | | | | | | 8/15/96 | 1140 | 82 | 8.0 | 1610 | 13.0 | | | | | | | 1.7 | | | | | | | 8/23/96 | 1225 | 80 | 7.9 | 1580 | 11.4 | | | | | | | 1.6 | | | | | | | 8/28/96 | 1238 | 75 | 8.0 | 1590 | 12.5 | | | | | | | 1.6 | 190 | 360 | 330 | 75 | 35 | | 9/5/96 | 1120 | 70 | 7.2 | 1710 | 16.4 | | | | | | | 1.7 | | | | | | | 9/12/96 | 750 | 68 | 6.9 | 1800 | 14.1 | | | | | | | 9.3* | | | | | | | 9/17/96 | 1430 | 70 | 8.0 | 1540 | 14.4 | | | | | | | 1.8 | 450 | 000 | 200 | 40 | 06 | | 9/26/96 | 935 | 68 | 5.8 | 1250 | 3.8 | | | | | | | 0.75 | 170 | 200 | 230 | 49 | 26 | | | | 40 | 4.0 | ~ 0 | ۲0 | 4 | | 2 | , · | ع ر | 2 | AD | 10 | 10 | 12 | 12 | 12 | | | Count | | 49 | 50 | 50 | 4 | 3 | 3 | 3 | <5
<5 | 3
16 | 48
0.47 | 12
170 | 12
200 | 230 | 12
49 | 23 | | | Min
Mov | | 5.8 | | 1.0 | 6
10 | 12
15 | 6
9 | 11
15 | <5 | 26 | 3.5 | 370 | 670 | 580 | 144 | 54 | | | Max
Mean | 84
66 | 8.2
7.7 | | 33.5
16.0 | 10
9 | 13 | 8 | 13 | <5 | 23 | 2.0 | 271 | 484 | 412 | 99 | 40 | | C | Mean
eo Mean | | 7.7 | | 13.4 | 8 | 13 | 8 | 13 | <5 | 22 | 1.9 | 262 | 460 | 393 | 94 | 39 | | G | eo Mean
Median | | 7.7 | | 16.1 | 9 | 12 | 8 | 14 | <5 | 26 | 2.0 | 290 | 520 | 450 | 106 | 44 | | | modali | . 00 | 7.0 | 2020 | 10.1 | , | 14 | J | 1.7 | 7.5 | 20 | ٠.٠٠ | | 520 | .50 | 200 | | APPENDIX B Water Quality Data for Grab Samples: Water Year 1997 | Map Index | RWQCB Site I.D. | Site Name | Page | |-----------|-----------------|--------------------------------------|------| | I-1** | MER556 | Main (Firebaugh) Drain @ Russel Ave. | 83 | | I-2* | MER501 | Panoche Drain | 83 | | I-4 | MER506 | Agatha Canal @ Mallard Road | 84 | | I-6* | MER504 | Hamburg Drain | 85 | | I-7 | MER505 | Camp 13 Slough | 86 | | I-8* | MER502 | Charleston Drain | 87 | | I-9* | MER555 | Almond Drive Drain | 87 | | I-10* | MER509 | Rice Drain | 87 | | I-12* | MER528 | Salt Slough Ditch @ Hereford Road | 87 | | T-1* | MER510 | CCID Main @ Russell Avenue | 87 | | T-5 | MER519 | Sante Fe Canal @ Henry Miller Road | 88 | | T-7A | MER532 | San Luis Canal @ Henry Miller Road | 89 | | T-13† | MER548 | Porter-Blake Bypass | 90 | | O-2 | MER542 | Mud Slough (N) Downstream of SLD | 91 | | O-3* | MER554 | Los Banos Creek @ Highway 140 | 92 | | O-4 | MER531 | Salt Slough @ Lander Avenue | 93 | | O-8 | MER536 | Mud Slough (N) Upstream of SLD | 94 | | SLD-1 | MER562 | Inflow to San Luis Drain @ Check 17 | 95 | | SLD-2 | MER535 | San Luis Drain @ Terminus | 96 | ^{*} Sampling discontinued in December 1996 SLD = San Luis Drain | ~ | | | | | | | | | |-------|-------|------|---|---|---|------|-----|-----| | - 1 4 | egend | 1 nt | А | h | h | revi | atu | กทร | | 0 | | |------|-------------------------| | EC | Electrical Conductivity | | Se | Selenium | | Mo | Molybdenum | | Cr | Chromium | | Cu | Copper | | Ni | Nickel | | Pb | Lead | | Zn | Zinc | | В | Boron | | C1 | Chlorine | | SO4 | Sulfate | | HDNS | Hardness | | | | [†] Data only available for November 1996 Figure B-1 ### Main (Firebaugh) Drain at Russel Avenue (MER556) Location: Latitude: 36°55'27", Longitude 120°39'11". In SW 1/4, SW 1/4, SW 1/4, Sec. 34, T.11S.,R.12E. East side of Russel Avenue, 2.7 miles south of Dos Palos. | | | | | Lab EC | Se | Boron | |----------|------|--------|-----|------------|--------|--------| | Date | Time | Temp F | pН | (µmhos/cm) | (μg/L) | (mg/L) | | 10/3/96 | 1045 | 68 | 7.8 | 4780 | 95.7 | 7.7 | | 10/8/96 | 1150 | 72 | 7.4 | 4150 | 74.6 | 7.4 | | 10/18/96 | 1140 | 60 | 7.7 | 4780 | 78.8 | 8.0 | | 10/25/96 | 1335 | 61 | 7.6 | 3990 | 45.2 | 5.8 | | 11/1/96 | 1400 | 60 | 7.9 | 2430 | 26.2 | 3.1 | | 11/8/96 | 1135 | 55 | 7.7 | 5350 | 84.4 | 9.5 | | 11/14/96 | 1035 | 58 | 8.0 | 3190 | 47.6 | 4.7 | | 11/19/96 | 1110 | 61 | 8.0 | 2190 | 32.6 | 2.8 | | 11/26/96 | 1200 | 58 | 7.7 | 4160 | 87.8 | 6.5 | | 12/5/96 | 1053 | NA | 7.8 | 4150 | 88.2 | 6.5 | | 12/10/96 | 1415 | 58 | 7.5 | 3440 | 73.2 | 5.2 | | 12/20/96 | 1035 | 47 | 7.8 | 5130 | 104 | 8.3 | | 12/27/96 | 0830 | 51 | 7.6 | 5870 | 134 | 9.5 | | Count | | 12 | 13 | 13 | 13 | 13 | | Min | | 47 | 7.4 | 2190 | 26.2 | 2.8 | | Max | | 72 | 8.0 | 5870 | 134 | 9.5 | | Mean | | 59 | 7.7 | 4124 | 74.8 | 6.5 | | Geo Mean | | 59 | 7.7 | 3973 | 68.2 | 6.1 | | Median | | 59 | 7.7 | 4150 | 78.8 | 6.5 | ### Panoche Drain at O'Banion Gauge Station (MER501) Location: Latitude 36°55'14", Longitude 120°41'43". In SW 1/4, SW 1/4, SW 1/4, Sec. 32, T.11S., R.12E. Located 0.5 miles south of CCID Main Canal, 1.9 miles west of Russel Road. 5.5 miles SW of Dos Palos. 3.4 miles SW of South Dos | | | | Lab EC | Se | Boron | |------|--|---|--
---|---| | Time | Temp F | pН | (µmhos/cm) | (μ g/L) | (mg/L) | | 1115 | 68 | 7.9 | 5720 | 120 | 8.9 | | 1220 | 74 | 8.0 | 4470 | 66.5 | 8.5 | | 1155 | 60 | 7.9 | 4900 | 49.6 | 8.8 | | 1430 | 62 | 8.3 | 5050 | 96.6 | 8.8 | | 1430 | 68 | 7.2 | 4560 | 62.3 | 7.6 | | 1230 | 60 | 7.8 | 5150 | 89.6 | 8.7 | | 1050 | 58 | 7.5 | 5400 | 98.0 | 9.6 | | 1237 | 60 | 7.5 | 4080 | 27.7 | 7.0 | | 1131 | NA | 7.6 | 4690 | 32.5 | 7.8 | | 1155 | 50 | 7.9 | 4870 | 83.4 | 7.8 | | | 9 | 10 | 10 | 10 | 10 | | | 50 | 7.2 | 4080 | 27.7 | 7.0 | | | 74 | 8.3 | 5720 | 120 | 9.6 | | Mean | | 7.7 | 4890 | 72.6 | 8.4 | | | 62 | 7.7 | 4870 | 66.0 | 8.3 | | | 60 | 7.8 | 4880 | 75.0 | 8.6 | | | 1115
1220
1155
1430
1430
1230
1050
1237
1131 | 1115 68 1220 74 1155 60 1430 62 1430 68 1230 60 1050 58 1237 60 1131 NA 1155 50 9 50 74 62 62 | 1115 68 7.9 1220 74 8.0 1155 60 7.9 1430 62 8.3 1430 68 7.2 1230 60 7.8 1050 58 7.5 1237 60 7.5 1131 NA 7.6 1155 50 7.9 9 10 50 7.2 74 8.3 62 7.7 62 7.7 | Time Temp F pH (µmhos/cm) 1115 68 7.9 5720 1220 74 8.0 4470 1155 60 7.9 4900 1430 62 8.3 5050 1430 68 7.2 4560 1230 60 7.8 5150 1050 58 7.5 5400 1237 60 7.5 4080 1131 NA 7.6 4690 1155 50 7.9 4870 9 10 10 50 7.2 4080 74 8.3 5720 62 7.7 4890 62 7.7 4870 | Time Temp F pH (μmhos/cm) (μg/L) 1115 68 7.9 5720 120 1220 74 8.0 4470 66.5 1155 60 7.9 4900 49.6 1430 62 8.3 5050 96.6 1430 68 7.2 4560 62.3 1230 60 7.8 5150 89.6 1050 58 7.5 5400 98.0 1237 60 7.5 4080 27.7 1131 NA 7.6 4690 32.5 1155 50 7.9 4870 83.4 9 10 10 10 50 7.2 4080 27.7 74 8.3 5720 120 62 7.7 4890 72.6 62 7.7 4870 66.0 | ### Agatha Canal at Mallard Road (MER506) Location: Latitude: 36°56'12", Longitude 120°42'07". In NE 1/4, NW 1/4, SW 1/4, Sec. 7, T.11S., R.11E. South of Sante Fe Grade at Brito, west of Mallard Road. 4.5 miles west of Dos Palos. | Σ. | , and 01 0 and | Temp | 22200, | EC EC | Se | B | Cl | SO4 | HDNS | Ca | Mg | |----------|----------------|------|--------|----------|--------------|------|------|------|------|------|------| | Date | Time | °F | pН | μmhos/cm | μ g/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/3/96 | 1215 | 70 | 8.5 | 481 | 1.0 | 0.21 | | | | | | | 10/8/96 | 1315 | 74 | 8.7 | 324 | 0.7 | 0.16 | | | | | | | 10/18/96 | 1240 | 64 | 7.9 | 358 | 0.6 | 0.16 | | | | | | | 10/25/96 | 1510 | 59 | 8.6 | 412 | 0.7 | 0.21 | | | | | | | 11/1/96 | 1238 | 62 | 7.7 | 407 | 1.0 | 0.21 | | | | | | | 11/8/96 | 1355 | 57 | 6.6 | 427 | 0.7 | 0.20 | | | | | | | 11/14/96 | 1145 | 59 | 8.5 | 445 | 0.8 | 0.23 | | | | | | | 11/19/96 | 1030 | 61 | 8.5 | 528 | 0.9 | 0.28 | | | | | | | 11/26/96 | 1120 | 60 | 8.3 | 418 | 1.0 | 0.21 | 55* | 43* | 87 | 18 | 10 | | 12/5/96 | 1243 | NA | 8.3 | 601 | 1.4 | 0.31 | | | | | | | 12/10/96 | 1430 | 56 | 7.8 | 573 | 1.3 | 0.36 | | | | | | | 12/20/96 | NA | NA | NA | 612 | 1.3 | 0.39 | | | | | | | 12/27/96 | 1040 | 54 | 7.0 | 704 | 1.8 | 0.46 | | | | | | | 1/9/97 | 1103 | 52 | 8.0 | 305 | NA | NA | | | | | | | 1/21/97 | 1400 | 56 | 8.1 | 231 | NA | 0.39 | | | | | | | 2/4/97 | 0715 | 56 | 6.1 | 4240 | NA | NA | | | | | | | 2/18/97 | 1310 | 55 | 8.4 | 193 | NA | NA | | | | | | | 3/5/97 | 1433 | NA | NA | 187 | 0.8 | 0.18 | | | | | | | 3/12/97 | 1035 | NA | NA | NA | 0.5 | 0.11 | | | | | | | 3/19/97 | 1111 | NA | NA | 235 | 1.8 | 0.24 | | | | | | | 3/26/97 | 1140 | NA | NA | 317 | 1.0 | 0.24 | | | | | | | 4/2/97 | 1143 | NA | NA | 457 | 3.0 | 0.31 | | | | | | | 4/9/97 | 1145 | NA | NA | 661 | 2.0 | 0.43 | | | | | | | 4/16/97 | 1240 | NA | NA | 559 | 2.6 | 0.32 | | | | | | | 4/23/97 | 1258 | NA | NA | 481 | 1.5 | 0.26 | | | | | | | 5/1/97 | 1141 | NA | NA | 520 | 1.5 | 0.30 | | | | | | | 5/7/97 | 1240 | NA | NA | 547 | 1.1 | 0.25 | | | | | | | 5/14/97 | 1238 | NA | NA | 497 | 1.3 | 0.25 | | | | | | | 5/21/97 | 1135 | NA | NA | 486 | 1.0 | 0.25 | | | | | | | 5/28/97 | 1240 | NA | NA | 504 | 1.1 | 0.26 | | | | | | | 6/4/97 | 1150 | NA | NA | 481 | 1.7 | 0.27 | | | | | | | 6/11/97 | 1155 | NA | NA | 476 | 1.3 | 0.27 | | | | | | | 6/18/97 | 1151 | NA | NA | 484 | 1.2 | 0.24 | | | | | | | 6/25/97 | 1240 | NA | NA | 423 | 1.1 | 0.20 | | | | | | | 7/2/97 | 1320 | NA | NA | 436 | 1.1 | 0.24 | | | | | | | 7/9/97 | 1240 | NA | NA | 396 | 1.0 | 0.19 | | | | | | | 7/16/97 | 1245 | NA | NA | 406 | 1.6 | 0.22 | | | | | | | 7/23/97 | 1240 | NA | NA | 419 | 1.6 | 0.24 | | | | | | | 7/30/97 | 1245 | NA | NA | 419 | 1.2 | 0.24 | | | | | | | 8/6/97 | 1240 | NA | NA | 373 | 1.5 | 0.27 | | | | | | | 8/13/97 | 1245 | NA | NA | 354 | 1.0 | 0.16 | | | | | | | 8/20/97 | 1240 | NA | NA | 368 | 1.5 | 0.20 | | | | | | | 8/27/97 | 1245 | NA | NA | 442 | 2.3 | 0.26 | | | | | | | 9/3/97 | 1050 | NA | NA | 553 | 3.4 | 0.38 | | | | | | | 9/10/97 | 1240 | NA | NA | 358 | 1.8 | 0.21 | | | | | | | 9/17/97 | 1130 | NA | NA | 354 | 1.1 | 0.17 | | | | | | | 9/24/97 | 956 | NA | NA | 379 | 1.0 | 0.19 | | | | | | | Count | | 15 | 16 | 46 | 43 | 44 | 0 | 0 | 1 | 1 | 1 | | Min | | 52 | 6.1 | 187 | 0.5 | 0.11 | | | 87 | 18 | 10 | | Max | | 74 | 8.7 | 4240 | 3.4 | 0.46 | | | 87 | 18 | 10 | | Mean | | 60 | 7.9 | 518 | 1.3 | 0.25 | | | 87 | 18 | 10 | | Geo Mean | | 59 | 7.9 | 441 | 1.2 | 0.24 | | | 87 | 18 | 10 | | Median | | 59 | 8.2 | 432 | 1.2 | 0.24 | | | 87 | 18 | 10 | ### Hamburg Drain near Camp 13 Slough (MER504) Location: Latitude: 36°56'20", Longitude 120°45'26". In SE 1/4, SE 1/4, SW 1/4, Sec. 27, T.11S., R.11E. 50 feet south of CCID main canal. 9.2 miles S-SE of Los Banos. 6.7 miles W-SW of South Dos Palos. | The Ass | 7m: | E | -17 | Lab EC | Se | Boron | |----------|------|--------|-----|---------------------|-----------------|--------| | Date | Time | Temp F | pН | (μ mh os/cm) | (μ g/L) | (mg/L) | | 10/3/96 | 1015 | 69 | 8.5 | 476 | 1.3 | 0.24 | | 10/8/96 | 1125 | 81 | 8.7 | 598 | 2.3 | 0.59 | | 10/18/96 | 1105 | 62 | 8.0 | 3530 | 19.8 | 4.2 | | 10/25/96 | 1130 | 59 | 8.4 | 3430 | 19.8 | 4.2 | | 11/1/96 | 1505 | 79 | 8.2 | 3450 | 18.8 | 3.9 | | 11/8/96 | 1055 | 62 | 8.4 | 3510 | 19.8 | 4.4 | | 11/14/96 | 1010 | 59 | 8.3 | 3350 | 18.2 | 4.2 | | 11/19/96 | 1237 | 66 | 8.3 | 3410 | 17.2 | 4.2 | | 11/26/96 | 1330 | 68 | 8.2 | 3250 | 17.6 | 4.2 | | 12/20/96 | 0955 | 46 | 7.5 | 3580 | 18.4 | 4.2 | | 12/27/96 | 1700 | 52 | 8.0 | 3610 | 22.6 | 4.4 | | Count | | 11 | 11 | 11 | 11 | 11 | | Min | | 46 | 7.5 | 476 | 1.3 | 0.2 | | Max | | 81 | 8.7 | 3610 | 22.6 | 4.4 | | Mean | | 64 | 8.2 | 2930 | 16.0 | 3.5 | | Geo Mean | | 63 | 8.2 | 2460 | 12.4 | 2.7 | | Median | | 62 | 8.3 | 3430 | 18.4 | 4.2 | Camp 13 Slough at Gauge Station (MER505) Location: Latitude 36°56'21", Longitude 120°45'22". In SE 1/4, SE 1/4, SW 1/4, Sec. 27, T.11S., R.11E. 150 feet north of CCID Main Canal, 6.4 miles west of Russel Avenue. 9.2 miles SE of Los Banos. 6.7 miles SW of South Dos Palos | Doto | Time o | Temp | TT | EC
μmhos/cm | Se
μg/L | В | Cl
mg/L | SO4
mg/L | HDNS
mg/L | Ca
mg/L | Mg
mg/L | |--------------------|--------------|-----------------|------------|----------------|---------------------|--------------|------------|-------------|--------------|------------|------------| | <u>Date</u> | Time | °F
69 | pH | 382 | <u>με/1.</u>
0.8 | mg/L
0.16 | mg/L | шул | шул | mg/L | шул | | 10/3/96
10/8/96 | 1020
1135 | 72 | 8.3
8.7 | 347 | 0.8 | 0.18 | | | | | | | 10/8/96 | 1110 | 64 | 8.5 | 360 | 0.6 | 0.16 | | | | | | | 10/16/96 | 1116 | 59 | 8.7 | 394 | 0.8 | 0.10 | | | | | | | 11/1/96 | 1500 | 63 | 9.0 | 394 | 0.8 | 0.17 | | | | | | | 11/1/96 | 1110 | 56 | 7.5 | 491 | 0.9 | 0.28 | | | | | | | 11/14/96 | 1020 | 59 | 8.7 | 434 | 0.7 | 0.25 | | | | | | | 11/19/96 | 1230 | 61 | 8.4 | 483 | 0.9 | 0.28 | | | | | | | 11/26/96 | 1320 | 61 | 8.1 | 445 | 1.0 | 2.6 | 64* | 49* | 30 | 9 | 1.8 | | 12/5/96 | NA | NA | NA | NA | NA | NA. | 0. | ., | | | | | 12/10/96 | NA | NA | NA | NA | NA | NA | | | | | | | 12/20/96 | 1005 | 46 | 8.4 | 612 | 1.4 | 0.37 | | | | | | | 12/27/96 | NA | NA | NA | 689 | 1.7 | 0.40 | | | | | | | 1/9/97 | 0929 | 50 | 8.5 | 224 | NA | 0.15 | | | | | | | 1/21/97 | NA | NA | NA. | 178 | NA | NA | | | | | | | 2/4/97 | 0838 | 58 | 7.6 | 1600 | 23.4 | 1.8 | | | | | | | 2/18/97 | 1409 | 56 | 7.9 | 172 | NA | NA | | | | | | | 3/5/97 | 1400 | 58 | 6.6 | 1380 | 2.0 | 2.3 | | | | | | | 3/12/97 | 0800 | NA | NA | NA | 2.8 | 3.5 | | | | | | | 3/19/97 | 0837 | NA |
NA | 1880 | 5.2 | 3.3 | | | | | | | 3/26/97 | 0840 | NA | NA | 3760 | 3.7 | 7.1 | | | | | | | 4/2/97 | 0840 | NA | NA | 3750 | 4.7 | 6.5 | | | | | | | 4/9/97 | 0842 | NA | NA | 560 | 1.7 | 0.33 | | | | | | | 4/16/97 | 0943 | NA | NA | 1290 | 2.7 | 1.6 | | | | | | | 4/23/97 | 0920 | NA | NA | 480 | 1.6 | 0.30 | | | | | | | 5/1/97 | 0927 | NA | NA | 955 | 2.6 | 1.0 | | | | | | | 5/7/97 | 0925 | NA | NA | 1210 | 13.5 | 1.1 | | | | | | | 5/14/97 | 1000 | NA | NA | 520 | 1.0 | 0.30 | | | | | | | 5/21/97 | 0917 | NA | NA | 496 | 1.0 | 0.26 | | | | | | | 5/28/97 | 0920 | NA | NA | 715 | 2.5 | 0.64 | | | | | | | 6/4/97 | 1005 | NA | NA | 1190 | 2.3 | 1.4 | | | | | | | 6/11/97 | 1051 | NA | NA | 703 | 1.5 | 0.69 | | | | | | | 6/18/97 | 1034 | NA | NA | 519 | 1.4 | 0.33 | | | | | | | 6/25/97 | 0953 | NA | NA | 1390 | 2.3 | 1.9 | | | | | | | 7/2/97 | 1042 | NA | NA | 563 | 1.1 | 0.49 | | | | | | | 7/9/97 | 1023 | NA | NA | 460 | 1.1 | 0.33 | | | | | | | 7/16/97 | 1050 | NA | NA | 614 | 1.6 | 0.58 | | | | | | | 7/23/97 | 1030 | NA | NA | 614 | 1.2 | 0.41 | | | | | | | 7/30/97 | 1054 | NA | NA | 1110 | 2.2 | 1.2 | | | | | | | 8/6/97 | 1050 | NA | NA | 1400 | 2.2 | 2.0 | | | | | | | 8/13/97 | 1048 | NA | NA. | 815 | 3.5 | 1.0 | | | | | | | 8/20/97 | 1027 | NA | NA | 352 | 1.0 | 0.20 | | | | | | | 8/27/97 | 1032 | NA | NA | 459 | 2.3 | 0.31 | | | | | | | 9/3/97 | 1000 | NA | NA | 502 | 3.6 | 0.35 | | | | | | | 9/10/97 | 1022 | NA | NA | 496 | 3.1 | 0.32 | | | | | | | 9/17/97 | 1015 | NA | NA | 341 | 1.2 | 0.18 | | | | | | | 9/24/97 | 800 | NA | NA | 439 | 1.2 | 0.23 | | | | | | | | | | | | | | - | • | | 4 | 4 | | Count | | 14 | 14 | 44 | 42 | 43 | 0 | 0 | 1 | 1 | 1 | | Min | | 46 | 6.6 | 172 | 0.6 | 0.15 | | | 30 | 9 | 1.8 | | Max | | 72
52 | 9.0 | 3760 | 23.4 | 7.1 | | | 30 | 9 | 1.8 | | Mean | | 59 | 8.2 | 822 | 2.6 | 1.1 | | | 30 | 9 | 1.8 | | Geo Mean | | 59
50 | 8.2 | 634 | 1.8 | 0.58 | | | 30 | 9 | 1.8
1.8 | | Median | | 59 | 8.4 | 520 | 1.6 | 0.37 | | | 30 | 9 | 1.0 | #### **Charleston Drain at CCID Main Canal (MER502)** Location: Latitude 36°56'59" Longitude 120°46'48". In NE 1/4, SE 1/4, NE 1/4, Sec. 29, T.11S., R.11E. North Side of CCID Main Canal, 8.7 miles S-SE of Los Banos. 7.9 miles W-SW of South Dos Palos. | | | | | Lab EC | Se | Boron | |----------|------|--------|-----|------------|--------|--------| | Date | Time | Temp F | pН | (µmhos/cm) | (μg/L) | (mg/L) | | 10/3/96 | 1005 | 68 | 8.2 | 979 | 6.7 | 0.71 | | 10/8/96 | 1110 | 72 | 7.7 | 870 | 7.5 | 0.83 | | 10/18/96 | 1050 | 62 | 7.1 | 1650 | 14.4 | 1.4 | | 10/25/96 | 1115 | 58 | 7.8 | 1690 | 14.2 | 1.5 | | 11/1/96 | 1510 | 63 | 8.6 | 1680 | 14.6 | 1.4 | | 11/8/96 | 1045 | 56 | 7.5 | 1790 | 15.9 | 1.7 | | 11/14/96 | 1000 | 58 | 8.0 | 1790 | 15.8 | 1.6 | | 11/19/96 | 1300 | 62 | 8.7 | 1880 | 16.0 | 1.7 | | 11/26/96 | 1345 | 60 | 8.4 | 1900 | 17.6 | 1.8 | | 12/20/96 | 0945 | 48 | 7.5 | 2470 | 24.1 | 2.4 | | Count | | 10 | 10 | 10 | 10 | 10 | | Min | | 48 | 7.1 | 870 | 6.7 | 0.7 | | Max | Max | | 8.7 | 2470 | 24.1 | 2.4 | | Mean | Mean | | 7.9 | 1670 | 14.7 | 1.5 | | Geo Mean | | 60 | 7.9 | 1600 | 13.8 | 1.4 | | Median | | 61 | 7.9 | 1740 | 15.2 | 1.6 | #### Almond Drive Drain (MER555) Location: Latitude 36°59'55", Longitude 120°49'00". In SW 1/4, SW 1/4, SW 1/4, Sec. 6, T.11S., R.11E. North side of Almond Drive, 1.1 miles east of Mercy Springs Drain, 100 feet east of CCID Main Canal. 4.7 miles south of Los Banos | | | | | Lab EC | Se | Boron | |----------|------|--------|-----|------------|-----------------|--------| | Date | Time | Temp F | pН | (µmhos/cm) | (μ g/L) | (mg/L) | | 11/1/96 | 1530 | 63 | 8.7 | 360 | 0.6 | 0.14 | | 11/26/96 | 1405 | 62 | 8.2 | 436 | NA | NA | | 12/27/96 | 0758 | 51 | 6.8 | 588 | NA | NA | ### Rice Drain at Mallard Road (MER509) Location: Latitude 36°59'22" Longitude 120°42' 14". In NE 1/4, NW 1/4, SW 1/4, Sec. 7, T.11S., R.11E. South of Sante Fe Grade at Brito, 50 feet west of Mallard Road. 4.5 miles west of Dos Palos. | | | | | | Lab EC | Se | Boron | |---|----------|------|--------|-----|------------|--------|--------| | | Date | Time | Temp F | pН | (µmhos/cm) | (μg/L) | (mg/L) | | = | 11/1/96 | 1230 | 60 | 7.3 | 1550 | 1.0 | 3.0 | | | 11/26/96 | 1125 | 59 | 7.7 | 1830 | NA | NA | | | 12/27/96 | 1030 | 54 | 7.5 | 2790 | NA | NA | | | | | | | | | | #### Salt Slough Ditch at Hereford Road (MER528) Location: Latitude 37°08'30" Longitude 120°45'17". In NW 1/4, NE 1/4, NW 1/4, Sec. 22, T.9S., R.11E. 3.0 miles north on Hereford Road from Henry Miller Road. | | | | | Lab EC | Se | Boron | |----------|------|--------|-----|------------|--------|--------| | Date | Time | Temp F | pН | (µmhos/cm) | (μg/L) | (mg/L) | | 11/1/96 | 1140 | 60 | 7.9 | 741 | 0.5 | 0.20 | | 11/27/96 | 950 | 55 | 7.1 | 758 | NA | NA | | 12/26/96 | 1420 | 48 | 8.0 | 1110 | NA | NA | #### CCID Main at Russel Avenue (MER510) Location: Latitude 36°55′28", Longitude 120°39′11". In SE 1/4, SE 1/4, SE 1/4, SE 1/4, SE .33, T.11S., R.12E. 2.7 miles south of Dos Palos. | | | | | | Lab EC | Se | Boron | |---|----------|------|--------|-----|------------|-----------------|--------| | | Date | Time | Temp F | pН | (µmhos/cm) | (μ g/L) | (mg/L) | | _ | 11/1/96 | 1405 | 61 | 8.4 | 352 | 0.7 | 0.13 | | | 11/26/96 | 1205 | 60 | 8.1 | 431 | NA | NA | | | 12/27/96 | 0835 | 51 | 7.8 | 599 | NA | NA | | | | | | | | | | Santa Fe Canal at Henry Miller Road (MER519) Location: Latitude 37°05'59", Longitude 120°49'44". In NE 1/4, NE 1/4, Sec. 1, T.10S., R.10E. 0.3 miles east of Lander Avenue. 3.0 miles north of Gustine. | | | Temp | | EC | Se | В | Cl | SO4 | HDNS | Ca | Mg | |----------|------|------|-----|-------------------|-----|--------|------|------|------|------|------| | Date | Time | °F | рH | μ mh os/cm | _ | · mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 11/1/96 | 1100 | 60 | 8.7 | 467 | 1.0 | 0.25 | 59 | 54 | 110 | 24 | 13 | | 11/8/96 | 0940 | 54 | 7.0 | 482 | 0.8 | 0.24 | | | | | | | 11/15/96 | 0937 | 57 | 7.3 | 573 | 0.9 | 0.35 | | | | | | | 11/22/96 | 0930 | 63 | 6.9 | 620 | 1.0 | 0.41 | | | | | | | 11/27/96 | 845 | 55 | 6.5 | 705 | 1.2 | 0.44 | | | | | | | 12/6/96 | 0935 | 50 | 6.7 | 638 | 1.2 | 0.35 | | | | | | | 12/12/96 | 1155 | 58 | 7.7 | 455 | 1.2 | 0.34 | | | | | | | 12/19/96 | 1305 | 52 | 7.6 | 630 | 1.3 | 0.32 | | | | | | | 12/26/96 | 1350 | 48 | 7.9 | 1230 | 1.5 | 1.5 | | | | | | | 2/4/97 | 1110 | 58 | 8.4 | 544 | 2.3 | 0.49 | | | | | | | 2/11/97 | 1240 | 58 | 7.9 | 339 | 0.8 | 0.35 | | | | | | | 2/18/97 | 1200 | 55 | 7.5 | 1750 | 1.4 | 2.5 | | | | | | | 2/28/97 | 1030 | 54 | 8.4 | 1760 | 2.3 | 2.5 | | | | | | | 3/5/97 | 1530 | NA | NA | 1870 | 2.9 | 2.5 | | | | | | | 3/12/97 | 1115 | NA | NA | NA | 2.0 | 1.6 | | | | | | | 3/19/97 | 1145 | NA | NA | 1400 | 2.0 | 2.1 | | | | | | | 3/26/97 | 1255 | NA | NA | 1870 | 3.1 | 2.9 | | | | | | | 4/2/97 | 1326 | NA | NA | 1570 | 1.8 | 2.6 | | | | | | | 4/9/97 | 1256 | NA | NA | 1480 | 2.4 | 1.8 | | | | | | | 4/16/97 | 1320 | NA | NA | 1720 | 3.0 | 1.7 | | | | | | | 4/23/97 | 1336 | NA | NA | 1130 | 3.2 | 1.1 | | | | | | | 5/1/97 | 1310 | NA | NA | 870 | 2.6 | 0.81 | | | | | | | 5/7/97 | 1314 | NA | NA | 825 | 2.9 | 0.66 | | | | | | | 5/14/97 | 1321 | NA | NA | 861 | 1.9 | 0.65 | | | | | | | 5/21/97 | 1335 | NA | NA | 746 | 1.6 | 0.63 | | | | | | | 5/28/97 | 1315 | NA | NA. | 892 | 2.1 | 0.86 | | | | | | | 6/4/97 | 1340 | NA | NA | 1100 | 2.6 | 1.0 | | | | | | | 6/11/97 | 1320 | NA | NA | 1070 | 2.5 | 1.1 | | | | | | | 6/18/97 | 1330 | NA | NA | 968 | 2.4 | 1.1 | | | | | | | 6/25/97 | 1325 | NA | NA | 1060 | 2.4 | 1.3 | | | | | | | 7/2/97 | 1410 | NA | NA | 799 | 2.2 | 0.74 | | | | | | | 7/9/97 | 1320 | NA | NA | 946 | 2.6 | 0.98 | | | | | | | 7/16/97 | 1330 | NA | NA | 841 | 2.2 | 0.96 | | | | | | | 7/23/97 | 1340 | NA | NA | 797 | 2.1 | 0.83 | | | | | | | 7/30/97 | 1335 | NA | NA. | 938 | 2.1 | 1.1 | | | | | | | 8/6/97 | 1340 | NA | NA | 976 | 2.2 | 1.2 | | | | | | | 8/13/97 | 1330 | NA | NA | 776 | 1.9 | 0.86 | | | | | | | 8/20/97 | 1320 | NA | NA | 825 | 2.1 | 0.71 | | | | | | | 8/27/97 | 1340 | NA | NA | 682 | 2.7 | 0.52 | | | | | | | 9/3/97 | 1330 | NA | NA | 640 | 3.5 | 0.51 | | | | | | | 9/10/97 | 1340 | NA | NA | 521 | 3.1 | 0.38 | | | | | | | 9/17/97 | 1240 | NA | NA | 642 | 3.9 | 0.54 | | | | | | | 9/24/97 | 1025 | NA | NA | 499 | 1.3 | 0.38 | Count | | 13 | 13 | 42 | 43 | 43 | 1 | 1 | 1 | 1 | 1 | | Min | | 48 | 6.5 | 339 | 0.8 | 0.24 | 59 | 54 | 110 | 24 | 13 | | Max | | 63 | 8.7 | 1870 | 3.9 | 2.9 | 59 | 54 | 110 | 24 | 13 | | Mean | | 56 | 7.6 | 941 | 2.1 | 1.0 | 59 | 54 | 110 | 24 | 13 | | Geo Mean | | 55 | 7.5 | 859 | 2.0 | 0.81 | 59 | 54 | 110 | 24 | 13 | | Median | | 55 | 7.6 | 833 | 2.1 | 0.83 | 59 | 54 | 110 | 24 | 13 | | | | | | | | | | | | | | San Luis Canal at Henry Miller Road (MER532) Location: Latitude 37 06' 00" Longitude 120 49' 13". In SE 1/4, SW 1/4, SE 1/4, Section 36, T10s, R10E. The site is 3 miles northeast of Los Banos at the Los Banos Wildlife Refuge. | | | Temp | | EC | Se | В | |----------|------|------------|-----|------------------|--------------|------| | Date | Time | °F | pН | μ mhos/cm | μ g/L | mg/L | | 11/1/96 | 1105 | 60 | 8.2 | 828 | 1.1 | 0.90 | | 11/8/96 | 0950 | <i>5</i> 5 | 7.5 | 943 | 1.1 | 1.1 | | 11/15/96 | 0945 | 58 | 7.4 | 967 | 1.0 | 1.2 | | 11/22/96 | 0940 | 63 | 7.1 | 910 | 1.1 | 1.1 | | 11/27/96 | 925 | 56 | 7.1 | 1020 | 1.1 | 1.2 | | 12/6/96 | 0950 | 50 | 7.0 | 911 | 1.1 | 0.88 | | 12/12/96 | 1200 | 57 | 7.5 | 868 | 1.1 | 1.3 | | 12/19/96 | 1315 | 52 | 7.6 | 1080 | 1.2 | 1.3 | | 12/26/96 | 1410 | NA | NA | NA | NA | NA | | 2/4/97 | 1120 | 60 | 7.9 | 1290 | 6.2 | 1.5 | | 2/11/97 | 1250 | 59 | 7.2 | 1240 | 1.1 | 1.8 | | 2/18/97 | 1210 | 55 | 7.7 | 1700 | 1.0 | 2.5 | | 2/28/97 | 1040 | 52 | 8.2 | 1300 | 1.6 | 2.0 | | 3/5/97 | 1520 | NA | NA | 1590 | 1.5 | 2.2 | | 3/12/97 | 1125 | NA | NA | NA | 1.1 | 1.0 | | 3/19/97 | 1150 | NA | NA | 1230 | 2.5 | 1.6 | | 3/26/97 | 1115 | NA | NA |
1840 | 2.5 | 3.3 | | 4/2/97 | 1340 | NA | NA | 1820 | 3.6 | 2.3 | | 4/9/97 | 1315 | NA | NA | 1550 | 2.7 | 1.8 | | 4/16/97 | 1307 | NA | NA | 1110 | 3.2 | 0.94 | | 4/23/97 | 1328 | NA | NA | 1120 | 3.3 | 1.1 | | 5/1/97 | 1320 | NA | NA | 860 | 3.0 | 0.78 | | 5/7/97 | 1320 | NA | NA | 775 | 2.3 | 0.57 | | 5/14/97 | 1315 | NA | NA | 803 | 1.6 | 0.57 | | 5/21/97 | 1345 | NA | NA | 908 | 1.9 | 0.86 | | 5/28/97 | 1307 | NA | NA | 848 | 1.9 | 0.69 | | 6/4/97 | 1350 | NA | NA | 909 | 2.6 | 0.79 | | 6/11/97 | 1315 | NA | NA | 798 | 2.1 | 0.69 | | 6/18/97 | 1306 | NA | NA | 813 | 2.2 | 0.80 | | 6/25/97 | 1315 | NA | NA | 860 | 2.1 | 0.80 | | 7/2/97 | 1400 | NA | NA | 698 | 1.9 | 0.61 | | 7/9/97 | 1310 | NA | NA | 917 | 2.5 | 0.87 | | 7/16/97 | 1321 | NA | NA | 628 | 1.8 | 0.52 | | 7/23/97 | 1320 | NA | NA | 762 | 2.1 | 0.71 | | 7/30/97 | 1320 | NA | NA | 750 | 1.8 | 0.75 | | 8/6/97 | 1330 | NA | NA | 886 | 2.0 | 0.86 | | 8/13/97 | 1310 | NA | NA | 619 | 1.5 | 0.55 | | 8/20/97 | 1311 | NA | NA | 781 | 2.0 | 0.73 | | 8/27/97 | 1330 | NA | NA | 708 | 2.7 | 0.57 | | 9/3/97 | 1300 | NA | NA | 605 | 3.2 | 0.47 | | 9/10/97 | 1331 | NA | NA | 501 | 3.4 | 0.38 | | 9/17/97 | 1150 | NA | NA | 660 | 4.3 | 0.57 | | 9/24/97 | 1020 | NA | NA | 507 | 1.6 | 0.36 | | | 1020 | | | | | | | Count | | 12 | 12 | 41 | 42 | 42 | | Min | | 50 | 7.0 | 501 | 1.0 | 0.36 | | Max | | 63 | 8.2 | 1840 | 6.2 | 3.3 | | Mean | | 56 | 7.5 | 973 | 2.1 | 1.1 | | Geo Mean | | 56 | 7.5 | 924 | 1.9 | 0.94 | | Median | | 57 | 7.5 | 886 | 2.0 | 0.87 | | | | | | | | | ### Porter-Blake Bypass (MER548) Location: Latitude 37°05'58.5", Longitude 120°49'14.5". In NW 1/4, Sec. 1, T.10S., R.10E. 7.5 miles east of the intersection of Henry Miller and Mercy Springs Roads. 2 miles north of Los Banos. | | | Temp | | EC | Se | В | |----------|------|------|------|------------------|------|------| | Date | Time | °F | pН | μ mhos/cm | μg/L | mg/L | | 11/1/96 | 1120 | 62 | 8.00 | 832 | 1.0 | 0.92 | | 11/27/96 | 910 | 55 | 6.86 | 1050 | 1.1 | 1.3 | # Mud Slough (north) at San Luis Drain (MER542) Location: Latitude 37°19'50", Longitude 120°57"03". In NW 1/4, NE 1/4, NW 1/4, Sec. 14, T.7S., R.9E. 5.0 miles east of Gustine, 3.5 miles SE of Highway 140. Located within Kesterson N. W. R. | | | Temp | | EC | Se | Мо | В | Cl | SO4 | HDNS | Ca | Mg | |-----------|------|------|-----|----------|------|------|--------|------|------|------|------|------| | Date | Time | °F | pН | μmhos/cm | μg/L | μg/L | · mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | | 10/3/96 | 0840 | 68 | 7.0 | 3490 | 56.7 | | 4.9 | | | | | | | 10/8/96 | 0950 | 73 | 8.0 | 1890 | 20.3 | | 2.5 | | | | | | | 10/18/96 | 0835 | 59 | 6.0 | 1680 | 13.5 | | 2.1 | | | | | | | 10/25/96 | 0930 | 58 | 8.0 | 1540 | 13.8 | | 1.8 | | | | | | | 10/29/96 | 1135 | 56 | 7.4 | 1880 | 12.2 | 11 | NA | | | | | | | 11/1/96 | 0835 | 59 | 6.4 | 1810 | NA | | 2.0 | 210 | 390 | 410 | 98 | 39 | | 11/8/96 | 0830 | 54 | 7.6 | 1510 | 8.0 | | 1.5 | | | | | | | 11/14/96 | 0815 | 58 | 6.5 | 1590 | 9.1 | | 1.8 | | | | | | | 11/19/96 | 0915 | 62 | 6.5 | 1710 | 11.2 | | 2.0 | | | | | •• | | 11/26/96 | 0830 | 59 | 6.5 | 1430 | 9.0 | 8 | 1.5 | 180 | 270 | 270 | 59 | 30 | | 12/5/96 | 0809 | NA | 6.5 | 1860 | 5.0 | | 2.0 | | | | | | | 12/10/96 | 1145 | 56 | 7.3 | 1500 | 5.5 | | 1.6 | | | | | | | 12/27/96 | 1158 | 56 | 7.4 | 1150 | 5.7 | 3 | 1.1 | | | | | | | 1/9/97 | 1342 | 54 | 7.7 | 1280 | 5.0 | | 1.3 | | | | | | | 1/21/97 | 0940 | 53 | 7.7 | 1620 | 9.2 | 6 | 1.8 | | | | | | | 2/4/97 | 1231 | 62 | 7.5 | 1310 | 7.4 | | 1.5 | | | | | | | 2/11/97 | 0955 | 55 | 7.8 | 2250 | 16.8 | | 2.9 | | | | | | | 2/18/97 | 0935 | 52 | 7.8 | 3140 | 33.2 | | 4.3 | | | | | | | 2/28/97 | 0758 | 51 | 8.1 | 3350 | 32.4 | 19 | 4.2 | | | | | | | 3/5/97 | 1710 | 58 | 8.5 | 3770 | 44.8 | | 5.3 | | | | | | | 3/13/97 | 0810 | 61 | 8.2 | 3560 | 46.5 | | 5.1 | | | | | | | 3/20/97 | 0800 | 64 | 7.9 | 2980 | 33.2 | | 3.9 | | | | | | | 3/27/97 | 1425 | 72 | 8.3 | 3640 | 42.4 | 17 | 4.5 | | | | | | | 4/3/97 | 1247 | 60 | 8.1 | 4420 | 61.9 | | 6.1 | | | | | | | 4/10/97 | 0730 | 58 | 7.4 | 4770 | 69.1 | | 6.2 | | | | | | | 4/17/97 | 1210 | 72 | 8.0 | 3870 | 58.6 | | 4.9 | | | | | | | 4/24/97 | 1116 | 64 | 8.4 | 4660 | 79.6 | 24 | 6.5 | | | | | | | 5/2/97 | 0945 | 64 | 8.4 | 4280 | 52.0 | | 5.9 | | | | | | | 5/8/97 | 0725 | 67 | 8.1 | 4930 | 63.1 | | 6.8 | | | | | | | 5/15/97 | 1415 | 83 | 8.6 | 3920 | 58.7 | | 5.3 | | | | | | | 5/29/97 | 0935 | 76 | 8.5 | 2890 | 32.3 | 17 | 4.2 | | | | | | | 6/5/97 | 1113 | 74 | 8.3 | 3810 | 47.2 | | 5.5 | | | | | | | 6/12/97 | 1110 | 78 | 8.5 | 3730 | 36.4 | | 6.0 | | | | | | | 6/19/97 | NA | NA | NA | NA | NA | | NA | | | | | | | 6/25/97 | 1115 | 76 | 8.2 | 3640 | 41.6 | 21 | 5.6 | | | | | | | 7/2/97 | 1300 | 77 | 8.4 | 3990 | 50.4 | | 6.6 | | | | | | | 7/10/97 | 1144 | 78 | 8.3 | 3310 | 29.7 | | 5.8 | | | | | | | 7/17/97 | 1140 | 82 | 8.4 | 3730 | 33.3 | | 6.5 | | | | | | | 7/24/97 | 1148 | 82 | 7.9 | 3510 | 36.4 | | 6.1 | | | | | | | 7/31/97 | 1245 | 80 | 7.2 | 2550 | 18.4 | 16 | 4.2 | | | | | | | 8/7/97 | 0947 | 81 | 8.0 | 3150 | 28.6 | | 5.2 | | | | | | | 8/14/97 | 1220 | 80 | 7.6 | 3650 | 37.5 | | 6.3 | | | | | | | 8/21/97 | 1537 | 84 | 7.8 | 3100 | 32.9 | | 4.8 | | | | | | | 8/27/97 | 1145 | 78 | 6.0 | 3340 | 40.6 | 23 | 5.3 | | | | | | | 9/5/97 | 0915 | 80 | 7.2 | 3080 | 23.6 | | 4.7 | | | | | | | 9/12/97 | 0930 | 73 | 7.4 | 2640 | 20.4 | | 4.1 | | | | | | | 9/18/97 | 1252 | 78 | 7.8 | 1950 | 8.4 | | 2.7 | | | | | | | 9/25/97 | 1505 | 84 | 8.0 | 2170 | 8.6 | 20 | 3.0 | | | | | | | 2143171 | 1707 | 07 | 0.0 | 22110 | 0.0 | | | | | | | | | Count | | 46 | 47 | 47 | 46 | 12 | 46 | 2 | 2 | 2 | 2 | 2 | | Min | | 51 | 6.0 | 1150 | 5.0 | 3 | 1.1 | 180 | 270 | 270 | 59 | 30 | | Max | | 84 | 8.6 | 4930 | 79.6 | 24 | 6.8 | 210 | 390 | 410 | 98 | 39 | | Mean | | 68 | 7.7 | 2870 | 30.7 | 15 | 4.1 | 195 | 330 | 340 | 79 | 35 | | Geo Mean | | 67 | 7.6 | 2660 | 23.3 | 13 | 3.6 | 194 | 324 | 333 | 76 | 34 | | Median | | 66 | 7.8 | 3100 | 32.4 | 17 | 4.4 | 195 | 330 | 340 | 79 | 35 | | TYTOUTAIL | | 00 | 7.0 | 2100 | Jan | 01 | ••• | -,,, | 230 | | | - | 91 # Los Banos Creek at State Highway 140 (MER554) Location: Latitude 37°16'35", Longitude 120°57'14". In NE 1/4, SW 1/4, SW 1/4, Sec., 35, T.7S., R.9E. South side of highway 140, 2.9 miles NE of Gustine. | | | | | Lab EC | Se | Boron | |----------|------|--------|-----|------------|-----------------|--------| | Date | Time | Temp F | pН | (µmhos/cm) | (μ g/L) | (mg/L) | | 10/31/96 | 1055 | 58 | 7.0 | 725 | 0.3 | 0.52 | | 11/27/96 | 1130 | 57 | 7.1 | 1140 | NA | NA | | 12/26/96 | 1250 | 48 | 7.8 | 1320 | NA | NA | # Salt Slough at Lander Avenue (State Highway 165) (MER531) Location: Latitude 37°14'55", Longitude 120°51'04". In NW 1/4, SE 1/4, SE 1/4, Sec. 10, T.8S., R.10E. 13.0 miles north of Los Banos. 5.0 miles south of Highway 140. | D-4- | Ti | Temp | TT | EC | Se | Mo | \mathbf{Cr} | Cu | Ni | Pb | Zn | В | CI
mg/f | | HDNS
mg/L | Ca | Mg
mg/L | |--------------------------|--------------|----------|------------|--------------|------------|----|---------------|------|----|----|----|--------------|------------|------|--------------|------|------------| | Date | Time | °F | pН | μmhos/cm | 1.0 | | | μg/L | | | | - mg/L | mg/L | mg/L | шұл | mg/L | mg/12 | | 10/3/96 | 0745 | 67
72 | 5.6 | 1400
1110 | 1.2
1.1 | | | | | | | 0.70
0.55 | | | | | | | 10/8/96
10/17/96 | 1030
1025 | 72
65 | 7.9
6.7 | 1790 | 0.8 | | | | | | | 0.80 | | | | | | | 10/17/96 | 0900 | 59 | 6.1 | 1360 | 0.7 | | | | | | | 0.66 | | | | | | | 10/24/96 | 0950 | 57 | 5.7 | 1000 | 1.0 | 4 | | | | | | 0.58 | 130 | 130 | 240 | 53 | 25 | | 11/7/96 | 0740 | 58 | 5.3 | 1280 | 0.8 | 7 | | | | | | 0.85 | 150 | 150 | 210 | 55 | 20 | | 11/15/96 | 1005 | 57 | 7.5 | 1420 | 0.8 | | | | | | | 0.87 | | | | | | | 11/22/96 | 1010 | 64 | 7.4 | 1320 | 1.0 | | | | | | | 0.94 | | | | | | | 11/27/96 | 1040 | 58 | 7.1 | 1320 | 0.8 | 4 | | | | | | 0.99 | 190 | 200 | 290 | 65 | 31 | | 12/6/96 | 1010 | 51 | 7.2 | 1500 | 0.9 | | | | | | | 1.0 | | | | | | | 12/12/96 | 1135 | 58 | 6.9 | 1130 | 1.1 | | | | | | | 1.1 | | | | | | | 12/19/96 | 1230 | 54 | 7.0 | 1680 | 0.7 | | | | | | | 1.1 | | | | | | | 12/26/96 | 1322 | 48 | 7.4 | 1780 | 0.8 | 7 | | | | | | 1.1 | | | | | | | 1/9/97 | 1225 | 52 | 8.0 | 1200 | 1.0 | | | | | | | 0.85 | | | | | | | 1/24/97 | 1255 | 52 | 7.0 | 1610 | 1.0 | 7 | | | | | | 1.3 | 240 | 290 | 350 | 76 | 39 | | 2 <i>1</i> 7 <i>1</i> 97 | 1420 | 57 | 7.4 | 1930 | 3.4 | | | | | | | 1.8 | | | | | | | 2/13/97 | 1310 | 54 | 7.8 | 1670 | 0.7 | | | | | | | 1.3 | | | | | | | 2/21/97 | 1010 | 56 | 7.3 | 1310 | 0.5 | | | | | | | 0.71 | | | | | | | 2/26/97 | 1250 | 53 | 7.4 | 1110 | 0.6 | 7 | | | | | | 0.50 | | | | | | | 3/5/97 | 1615 | 57 | 7.8 | 1070 | 0.5 | | | | | | | 0.47 | | | | | | | 3/12/97 | 1820 | 59 | 7.8 | 1090 | 0.6 | | | | | | | 0.52 | | | | | | | 3/20/97 | 1030 | 66 | 8.0 | 1180 | 1.4 | | | | | | | 0.75 | | | | | | | 3/27/97 | 1310 | 70 | 7.5 | 1780 | 1.1 | 7 | | | | | | 1.3 | | | | | | | 4/3/97 | 1020 | 60 | 7.7 | 2000 | 1.0 | | | | | | | 1.1 | | | | | | | 4/10/97 | 0820 | 58 | 8.1 | 1860 | 1.0 | | | | | | | 0.81 | | | | | | | 4/17/97 | 1020 | 70 | 8.0 | 1770 | 1.1 | | | | | | | 0.75 | | | | | | | 4/24/97 | 1012 | 62 | 7.5 | 1820 | 1.1 | 10 | | | | | | 0.81 | 280 | 250 | 360 | 77 | 41 | | 5/2/97 | 0800 | 61 | 8.2 | 1670 | 1.1 | | | | | | | 0.82 | | | | | | | 5/8/97 | 0821 | 69 | 7.9 | 1700 | 1.1 | | | | | | | 0.77 | | | | | | | 5/15/97 | 0905 | 75 | 7.9 | 1670 | 1.1 | | | | | | | 0.74 | | | | | | | 5/23/97 | 1200 | 72 | 8.2 | 1360 | 0.9 | | | | | | | 0.56 | | | | | | | 5/29/97 | 1050 | 78 | 8.4 | 1200 | 1.3 | 6 | | | | | | 0.65 | | | | | | | 6/5/97 | 0952 | 70 | 6.6 | 1620 | 1.2 | | | | | | | 0.74 | | | | | | | 6/12/97 | 1240 | 80 | 8.1 | 1370 | 1.1 | | | | | | | 0.61 | | | | | | | 6/19/97 | NA | NA | NA | NA | NA | 0 | | | | | | NA | | | | | | | 6/25/97 | 1010 | 76 | 7.8 | 1350 | 1.1 | 9 | | | | | |
0.73
0.50 | | | | | | | 7/2/97 | 1150 | 74 | 7.7 | 1070 | 1.1 | | | | | | | 0.63 | | | | | | | 7/10/97 | 0932 | 75
70 | 7.8 | 1310 | 0.9 | | | | | | | 0.48 | | | | | | | 7/17/97
7/24/97 | 1100 | 78
78 | 8.6 | 1030
1140 | 1.0
0.9 | | | | | | | 0.46 | | | | | | | 7/31/97 | 0945
1045 | 78
78 | 8.2
8.4 | 975 | 1.1 | 5 | | | | | | 0.57 | 110 | 120 | 200 | | | | 8/7/97 | 0834 | 78
79 | 7.3 | 1130 | 1.3 | J | | | | | | 0.69 | 110 | 120 | 200 | | | | 8/14/97 | 1135 | 80 | 7.3
7.8 | 922 | 0.8 | | | | | | | 0.46 | | | | | | | 8/21/97 | 1214 | 80 | 7.6 | 982 | 0.8 | | | | | | | 0.40 | | | | | | | 8/27/97 | 1430 | 80 | 6.0 | 1110 | 1.0 | 5 | | | | | | 0.48 | | | | | | | 9/5/97 | 1050 | 82 | 8.1 | 1190 | 1.8 | 3 | | | | | | 0.53 | | | | | | | 9/12/97 | 0815 | 74 | 6.7 | 1200 | 1.5 | | | | | | | 0.57 | | | | | | | 9/18/97 | 1039 | 74 | 7.0 | 1050 | 1.6 | | | | | | | 0.50 | | | | | | | 9/25/97 | 1600 | 85 | 8.0 | 1380 | 0.7 | 9 | | | | | | 0.65 | | | | | | | 7.30171 | | | | -2.55 | | | | | | | | | | | | | • | | Count | : | 48 | 48 | 48 | 48 | 12 | 0 | 0 | 0 | 0 | 0 | 48 | 5 | 5 | 5 | 4 | 4 | | Min | | 48 | 5.3 | 922 | 0.5 | 4 | | | | | | 0.40 | 110 | 120 | 200 | 53 | 25 | | Max | | 85 | 8.6 | 2000 | 3.4 | 10 | | | | | | 1.8 | 280 | 290 | 360 | 77 | 41 | | Mean | L | 67 | 7.4 | 1370 | 1.0 | 7 | | | | | | 0.77 | 190 | 198 | 288 | 68 | 34 | | Geo Mean | ı | 66 | 7.4 | 1340 | 1.0 | 6 | | | | | | 0.73 | 179 | 187 | 281 | 67 | 33 | | Median | l | 67 | 7.6 | 1320 | 1.0 | 7 | | | | | | 0.72 | 190 | 200 | 290 | 71 | 35 | # Mud Slough Upstream of San Luis Drain (MER536) Location: Latitude 37°19'50", Longitude 120°57"03". In NW 1/4, NE 1/4, NW 1/4, Sec. 14, T.7S., R.9E. 5.0 miles east of Gustine, 3.5 miles SE of Highway 140. Located within Kesterson N. W. R. | Data Time | | | Temp | | EC | Se | Mo | В | Cl | SO4 | HDNS | Ca | Mg | |--|---------|------|------|-----|------|-----|-------|------|------|------|------|------|------------| | 10/89/6 1010 | Date | Time | | pН | | | | | mg/L | mg/L | mg/L | mg/L | mg/L | | 1001806 | 10/3/96 | 0830 | 65 | 6.3 | 1050 | 0.7 | | | | | | | | | 10025906 10555 577 | 10/8/96 | 1010 | 71 | | | | | | | | | | | | 10/2906 1135 56 | | | | | | | | | | | | | | | 111/166 | | | | | | | | | | | | | 271 | | 11/14/96 | | | | | | | 7 | | NA | NA | NA | NA | NA | | 11/14/96 0805 58 | | | | | | | | | | | | | | | 11/1996 0900 62 6.5 1070 0.4 0.81 11/2696 0905 59 7.3 1000 0.5 NA 0.79 140 120 180 34 23 12/1996 1215 58 7.4 983 0.5 0.75 1.0 12/1096 1215 58 7.4 983 0.5 0.75 0.75 12/2796 1150 56 7.4 828 0.5 3 0.67 12/2797 1150 56 7.4 828 0.5 3 0.67 12/2797 1219 62 7.5 875 0.5 0.5 0.77 12/1971 0920 53 7.6 1070 0.4 3 0.87 120 140 210 39 27 2/1897 0925 52 7.6 1730 0.7 1.8 2/1897 0925 52 7.6 1730 0.7 1.8 2.0 2/1897 0741 50 7.6 2040 1.0 NA 2.0 3/3697 1725 60 8.3 2030 0.8 2.0 3/2797 0739 64 6.8 1910 1.0 2.1 3/2797 1415 72 8.1 2350 0.9 7 2.4 4/1097 0718 54 6.8 2960 1.3 2.9 4/1097 1101 63 8.4 2470 0.8 2.1 5/2897 1010 63 8.4 2470 0.8 2.1 5/2897 1012 78 8.3 1500 1.5 1.2 6/1997 NA NA NA NA NA NA NA N | | | | | | | | | | | | | | | 11/26/96 0905 59 | | | | | | | | | | | | | | | 12506 | | | | | | | 'NT A | | 140 | 120 | 180 | 3/ | 23 | | 12/10/96 | | | | | | | IVA | | 140 | 120 | 100 | 34 | 23 | | 12/20/96 0835 46 | | | | | | | | | | | | | | | 12/27/96 | | | | | | | | | | | | | • | | 1997 1331 54 7.5 921 <0.4 0.72
1/21/97 0920 53 7.6 1070 0.4 3 0.87 120 140 210 39 27
2/11/97 0930 56 7.2 1430 0.7 1.4
2/11/97 0930 56 7.2 1430 0.7 1.8
2/18/97 0925 52 7.6 1730 0.7 1.8
2/18/97 0741 50 7.6 2040 1.0 NA 2.0 37/5/97 1725 60 8.3 2030 0.8 2.0
3/13/97 0750 51 7.1 1970 1.0 2.1
3/20/97 0739 64 6.8 1910 1.0 2.1
3/20/97 0739 64 6.8 1910 1.0 2.1
3/20/97 0739 64 6.8 910 1.0 2.1
3/20/97 0739 64 6.8 9560 1.3 2.9
4/10/97 0718 54 6.8 2960 1.3 2.9
4/10/97 0718 54 6.8 2960 1.3 2.9
4/10/97 0718 54 6.8 2350 0.9 7 2.4
4/20/97 1100 63 8.2 2350 0.9 2.3
5/20/97 1010 63 8.4 2470 0.8 2.1
5/20/97 1125 72 8.3 1130 1.2 5 0.94
6/5/97 1128 74 8.3 1130 1.2 5 0.94
6/5/97 1128 74 8.3 1500 1.5 1.2
6/19/97 NA NA NA NA NA NA NA N | | | | | | | 3 | | | | | | | | | | | | | | | - | | | | | | | | 24/197 1219 62 7.5 875 0.5 0.77 1.4 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1. | | | | | | | 3 | | 120 | 140 | 210 | 39 | 27 | | 21197 0930 55 7.2 | | | | | | | | | | | | | | | 2/28/97 0741 50 | | | | | 1430 | 0.7 | | 1.4 | | | | | | | 3/5/97 1725 60 8.3 2030 0.8 2.0 3/13/97 0750 51 7.1 1970 1.0 2.1 3/20/97 0739 64 6.8 1910 1.0 2.1 3/27/97 1415 72 8.1 2350 0.9 7 2.4 4/3/97 1311 66 8.2 2350 1.1 2.6 4/10/97 0718 54 6.8 2960 1.3 2.9 4/17/97 1225 72 8.2 1720 1.7 1.5 5/24/97 1010 63 8.2 2430 0.9 2.3 5/5/97 0711 63 8.4 2360 1.2 11 2.1 320 490 430 74 59 5/2/97 1010 63 8.2 2430 0.9 2.3 5/5/97 0711 63 8.4 2470 0.8 2.1 5/5/2/97 1040 70 7.9 1080 0.7 0.95 5/2/97 1040 70 7.9 1080 0.7 0.95 5/2/97 1040 70 7.9 1080 0.7 0.95 5/2/97 1050 76 8.3 1130 1.2 5 0.94 6/5/97 1125 78 8.3 1500 1.5 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 125 78 8.3 1500 1.5 1.2 6/12/97 1245 79 8.4 1540 1.0 1.3 7/12/97 1204 83 8.1 1160 1.7 7 1.4 7/12/97 1204 83 8.1 1160 1.5 1.0 7/12/97 1205 77 8.1 120 1.4 1.1 7/17/97 1200 80 8.3 1550 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.0 7/13/97 1205 77 8.1 1200 1.4 1.1 7/17/97 1200 80 8.3 1550 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.0 7/34/97 1204 83 8.1 1160 1.5 1.0 7/34/97 1204 83 8.1 1160 1.5 0.96 8/21/97 1556 89 8.2 1220 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.98 8/21/97 1556 89 8.2 1220 0.6 0.98 8/21/97 1556 89 8.2 1220 0.6 0.98 8/21/97 1556 89 8.2 1220 0.6 0.98 8/21/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 12/97 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1. | | 0925 | | | 1730 | 0.7 | | 1.8 | | | | | | | 3/13/97 0750 51 7.1 1970 1.0 2.1 3/20/97 0739 64 6.8 1910 1.0 2.1 3/20/97 1415 72 8.1 2350 0.9 7 2.4 4/39/7 1415 72 8.1 2350 0.9 7 2.4
4/39/7 1311 66 8.2 2350 1.1 2.6 4/10/97 0718 54 6.8 2960 1.3 2.9 4/4/10/97 1225 72 8.2 1720 1.7 1.5 4/24/97 1140 62 8.4 2360 1.2 11 2.1 320 490 430 74 59 5/29/7 1010 63 8.2 2430 0.9 2.3 5/89/7 0711 63 8.4 2470 0.8 2.1 5/89/7 0711 63 8.4 2470 0.8 2.1 5/89/7 0711 63 8.4 2470 0.8 2.1 5/89/7 0711 63 8.4 2470 0.8 2.1 5/89/7 0711 63 8.4 2470 0.8 2.1 5/89/7 0900 76 8.3 1130 1.2 5 0.94 6/5/97 1128 74 8.3 1610 1.6 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 120 80 8.3 1550 1.3 1.3 7/10/97 1205 77 8.1 1200 1.4 1.1 7/11/97 1200 80 8.3 1550 1.3 1.3 7/10/97 1204 83 8.1 1160 1.5 1.0 7/31/97 1300 80 8.3 859 1.1 3 0.70 93 120 190 8/87/97 1002 81 8.3 1130 0.8 0.92 8/81/97 1556 89 8.2 1220 0.6 0.94 8/81/97 1556 89 8.2 1220 0.6 0.94 8/81/97 1556 89 8.2 1220 0.6 0.98 8/81/97 1556 89 8.2 1220 0.6 0.98 8/81/97 1556 89 8.2 1220 0.6 0.98 8/81/97 1556 89 8.2 1220 0.6 0.98 8/81/97 1556 89 8.2 1220 0.6 0.98 8/81/97 1556 89 8.2 1220 0.6 0.98 8/81/97 1556 89 8.2 1220 0.6 0.98 8/81/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 1220 0.6 0.85 9/12/97 1556 89 8.2 12/9 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2/28/97 | 0741 | 50 | 7.6 | 2040 | 1.0 | NA | 2.0 | | | | | | | 3/20/97 0739 64 6.8 1910 1.0 2.1 3/27/97 1415 72 8.1 2350 0.9 7 2.4 4/3/97 1311 66 8.2 2350 1.1 2.6 4/10/97 0718 54 6.8 2960 1.3 2.9 4/17/97 1225 72 8.2 1720 1.7 1.5 4/24/97 1140 62 8.4 2360 1.2 11 2.1 320 490 430 74 59 5/2/97 1010 63 8.2 2430 0.9 2.3 5/8/97 0711 63 8.4 2470 0.8 2.1 5/15/97 1040 70 7.9 1080 0.7 0.95 5/23/97 1040 70 7.9 1080 0.7 0.95 5/23/97 1040 70 7.9 1080 0.7 0.95 5/23/97 1025 78 8.3 1130 1.2 5 0.94 6/5/397 1128 74 8.3 1610 1.6 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 125 79 8.4 1540 1.0 1.3 7/12/97 1205 77 8.1 1200 1.4 1.1 7/12/97 1205 77 8.1 1200 1.4 1.1 7/12/97 1206 80 8.3 1550 1.3 1.3 7/12/97 1200 80 8.3 1550 1.3 1.3 7/12/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1000 80 8.3 1500 1.5 1.0 7/31/97 1000 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 1500 1.5 1.0 7/31/97 1200 80 8.3 8.1 1160 1.5 1.0 7/31/97 1200 80 8.3 8.1 1160 0.6 0.91 8/21/97 1200 80 8.3 8.1 1160 0.6 0.91 8/21/97 1200 80 8.3 8.1 1160 0.6 0.99 8/21/97 1200 80 8.3 8.1 1160 0.6 0.99 8/21/97 1200 80 8.3 8.1 1100 0.6 0.85 9/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 8.1 1100 0.6 0.85 9/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 1300 0.8 0.92 8/21/97 1200 80 8.3 1300 0.8 0.92 8/21/97 1200 80 80 80 80 80 80 80 80 80 80 80 80 8 | 3/5/97 | 1725 | 60 | 8.3 | 2030 | 0.8 | | | | | | | | | 3/27/97 1415 72 8.1 2350 0.9 7 2.4 4/3/97 1311 66 8.2 2350 1.1 2.6 4/10/97 0718 54 6.8 2960 1.3 2.9 4/17/97 1225 72 8.2 1720 1.7 1.5 4/24/97 1140 62 8.4 2360 1.2 11 2.1 320 490 430 74 59 5/29/97 1010 63 8.2 2430 0.9 2.3 5/8/97 0711 63 8.4 2470 0.8 2.1 5/18/97 1435 84 8.5 1430 1.4 1.1 5/18/97 1435 84 8.5 1430 1.4 1.1 5/18/97 1128 74 8.3 1610 1.6 1.5 6/12/97 1128 74 8.3 1610 1.6 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 125 78 8.3 1500 1.5 1.2 6/12/97 125 78 8.3 1500 1.5 1.2 6/12/97 125 78 8.3 1500 1.5 1.2 6/12/97 125 78 8.3 1500 1.5 1.2 6/12/97 120 80 8.3 1500 1.5 1.3 1.3 7/10/97 1205 77 8.1 1200 1.4 1.1 7/17/97 1200 80 8.3 1550 1.3 1.3 7/10/97 1205 77 8.1 1200 1.4 1.1 7/17/97 1200 80 8.3 1500 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.3 1.3 7/24/97 1200 80 8.3 1500 1.3 1.3 1.3 7/24/97 1200 80 8.3 1500 1.3 1.3 8/19/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/19/97 1307 79 8.1 8.3 1100 0.6 0.91 8/19/97 1556 89 8.2 1220 0.6 0.91 8/19/97 1556 89 8.2 1220 0.6 0.98 8/19/97 1556 89 8.2 1220 0.6 0.98 8/19/97 1555 84 7.6 1050 0.6 0.85 9/12/97 1455 84 7.6 1050 0.6 0.85 9/12/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 0.8 48 4 4 4 4 3 3 3 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 67 7.5 1390 0.8 6 1.1 150 177 236 46 33 | 3/13/97 | 0750 | 51 | 7.1 | 1970 | | | 2.1 | | | | | | | 4/3/97 1311 66 | 3/20/97 | 0739 | 64 | 6.8 | | | | | | | | | | | 4/10/97 0718 54 6.8 2960 1.3 2.9 4/11/97 1225 72 8.2 1720 1.7 1.5 4/12/97 1140 62 8.4 2360 1.2 11 2.1 320 490 430 74 59 5/29/77 1010 63 8.2 2430 0.9 2.3 5/8/97 0711 63 8.4 2470 0.8 2.1 5/15/97 1355 84 8.5 1430 1.4 1.1 5/23/97 1040 70 7.9 1080 0.7 0.95 5/29/97 0950 76 8.3 1130 1.2 5 0.94 6/12/97 1128 74 8.3 1610 1.6 1.3 6/12/97 1128 74 8.3 1610 1.5 1.2 6/19/97 NA NA NA NA NA NA NA NA NA 6/25/97 1105 76 7.9 1460 1.7 7 1.4 7/29/7 1245 79 8.4 1540 1.0 1.3 7/12/97 1200 80 8.3 1550 1.5 1.2 7/12/97 1204 83 8.1 1160 1.5 1.3 7/12/97 1204 83 8.1 1160 1.5 1.3 7/12/97 1204 83 8.1 1160 1.5 1.3 7/12/97 1204 83 8.1 1160 1.5 1.0 7/33/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/17/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/17/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/17/97 1305 78 5.8 1260 1.1 5 0.96 9/12/97 1355 89 8.2 1220 0.6 0.98 8/12/97 1355 89 8.2 1220 0.6 0.99 8/12/97 1355 89 8.2 1220 0.6 0.0 0.8 8/12/97 1355 89 8.2 1220 0.0 0.8 8/12/97 1355 89 8.2 1220 0.0 0.0 0.8 8/12/97 1355 89 8.2 1220 0.0 0.0 0.8 8/1 | 3/27/97 | | 72 | | | | 7 | | | | | | | | 4/17/97 1225 72 8.2 1720 1.7 1.5 4/24/97 1140 62 8.4 2360 1.2 11 2.1 320 490 430 74 59 5/2/97 1010 63 8.2 2430 0.9 2.3 5/15/16 1.3 5/15/16 1.3 6/12/17 1.1 5/13/97 1040 70 7.9 1080 0.7 0.95 5 5/23/97 1040 70 7.9 1080 0.7 0.95 5 5/23/97 1040 70 7.9 1080 0.7 0.95 5 5 5 0.94 6/12/97 1128 74 8.3 1610 1.6 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/19/97 NA 1.4 1.1 1.4 1.1 1.2 1.4 1.1 1.4 1.1 | 4/3/97 | 1311 | | | | | | | | | | | | | 4/24/97 | | | | | | | | | | | | | | | 572/97 1010 63 8.2 2430 0.9 2.3 5/8/97 0711 63 8.4 2470 0.8 2.1 5/15/97 1435 84 8.5 1430 1.4 1.1 5/23/97 1040 70 7.9 1080 0.7 0.95 5/29/97 0950 76 8.3 1130 1.2 5 0.94 6/3/97 1128 74 8.3 1610 1.6 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 NA NA NA NA NA NA NA 6/25/97 1105 76 7.9 1460 1.7 7 1.4 7.1 7.1 1.4 7.1 7.1 1.4 7.1 7.1 1.4 7.1 7.1 1.4 1.1 7.1 7.1 1.4 1.1 7.1 7.1 1.4 1.1 1.1 | | | | | | | | | | | | | # 0 | | 5/8/97 0711 63 8.4 2470 0.8 2.1 5/15/97 1435 84 8.5 1430 1.4 1.1 5/23/97 1040 70 7.9 1080 0.7 0.95 5/29/97 0950 76 8.3 1130 1.2 5 0.94 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1125 78 8.3 1500 1.5 1.2 6/12/97 1105 76 7.9 1460 1.7 7 1.4 7/12/97 1245 79 8.4 1540 1.0 1.3 7/11/97 1200 80 8.3 1550 1.3 1.3 1.3 1.3 1.3 1.3 17/17/97 1204 83 8.1 1160 1.5 1.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td><td>320</td><td>490</td><td>430</td><td>74</td><td>59</td></td<> | | | | | | | 11 | | 320 | 490 | 430 | 74 | 59 | | 5/15/97 1435 84 8.5 1430 1.4 1.1 5/23/97 1040 70 7.9 1080 0.7 0.95 5/29/97 0950 76 8.3 1130 1.2 5 0.94 6/5/97 1128 74 8.3 1610 1.6 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/19/97 NA NA NA NA NA NA 6/25/97 1105 76 7.9 1460 1.7 7 1.4 7/2/97 1245 79 8.4 1540 1.0 1.3 1.1 1.1 7/10/97 1200 80 8.3 1550 1.3 1.3 1.3 1.3 7/11/97 1200 80 8.3 1550 1.3 | | | | | | | | | | | | | | | 5/23/97 1040 70 7.9 1080 0.7 0.95 5/29/97 0950 76 8.3 1130 1.2 5 0.94 6/5/97 1128 74 8.3 1610 1.6 1.3 6/12/97 NA NA NA NA NA NA 6/12/97 1125 78 8.3 1500 1.5 1.2 6/19/97 NA NA NA NA NA NA 6/19/97 1105 76 7.9 1460 1.7 7 1.4 7/12/97 1245 79 8.4 1540 1.0 1.3 7/11/97 1200 80 8.3 1550 1.3 1.3 7/12/97 1204 83 8.1 1160 1.5 1.0 7/31/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/14/97 1210 | | | | | | | | | | | | | | | 5/29/97 0950 76 8.3 1130 1.2 5 0.94 6/5/97 1128 74 8.3 1610 1.6 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/19/97 NA NA NA NA NA 6/19/97 1105 76 7.9 1460 1.7 7 1.4 7/2/97 1245 79 8.4 1540 1.0 1.3 7/11/97 1205 77 8.1 1200 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.3 1.3 1.3 1.2 1.0
1.0 1.3 1.1 3 0.70 93 120 190 190 190 8.7 1.1 3 0.70 93 120 190 190 190 190 190 190 190 190 144 1.1 1 3 0 | | | | | | | | | | | | | | | 6/5/97 1128 74 8.3 1610 1.6 1.3 6/12/97 1125 78 8.3 1500 1.5 1.2 6/19/97 NA | | | | | | | _ | | | | | | | | 6/12/97 1125 78 8.3 1500 1.5 1.2 6/19/97 NA NA NA NA NA NA NA NA NA 6/25/97 1105 76 7.9 1460 1.7 7 1.4 7/2/97 1245 79 8.4 1540 1.0 1.3 7/10/97 1205 77 8.1 1200 1.4 1.1 7/17/97 1200 80 8.3 1550 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.0 7/31/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/7/97 1002 81 8.3 1130 0.8 0.92 8/7/97 1002 81 8.3 1130 0.8 0.92 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.85 8/27/97 1135 78 5.8 1260 1.1 5 0.96 9/15/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/12/97 1307 79 8.1 881 1.0 0.60 9/12/97 1307 79 8.1 881 1.0 0.060 9/12/97 1307 79 8.1 881 1.0 0.060 9/12/97 1307 79 8.1 881 1.0 0.060 9/12/97 1307 79 8.1 881 1.0 0.060 9/12/97 1307 79 8.1 881 1.0 0.060 9/12/97 1307 89 84 7.6 1050 0.6 10 0.77 Count 48 49 49 49 48 10 48 4 4 4 4 3 3 3 Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.1 150 177 236 46 33 | | | | | | | 3 | | | | | | | | 6/19/97 NA | | | | | | | | | | | | | | | 6/25/97 1105 76 7.9 1460 1.7 7 1.4 7/2/97 1245 79 8.4 1540 1.0 1.3 7/10/97 1205 77 8.1 1200 1.4 1.1 7/17/97 1200 80 8.3 1550 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.0 7/31/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/7/97 1002 81 8.3 1130 0.8 0.92 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.91 8/21/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 4 3 3 3 Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | | | | | | | | | | | 7/2/97 1245 79 8.4 1540 1.0 1.3 7/10/97 1205 77 8.1 1200 1.4 1.1 7/17/97 1200 80 8.3 1550 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.0 7/31/97 1300 80 8.0 8.0 859 1.1 3 0.70 93 120 190 8/7/97 1002 81 8.3 1130 0.8 0.92 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.98 8/21/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 4 3 3 3 Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | | | 7 | | | | | | | | 7/10/97 1205 77 8.1 1200 1.4 1.1 7/17/97 1200 80 8.3 1550 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.0 7/31/97 1300 80 8.0 8.0 859 1.1 3 0.70 93 120 190 8/7/97 1002 81 8.3 1130 0.8 0.92 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.98 8/27/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 4 3 3 3 Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | | | , | | | | | | | | 7/17/97 1200 80 8.3 1550 1.3 1.3 7/24/97 1204 83 8.1 1160 1.5 1.0 7/31/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/7/97 1002 81 8.3 1130 0.8 0.92 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.98 8/27/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 | | | | | | | | | | | | | | | 7/24/97 1204 83 8.1 1160 1.5 1.0 7/31/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/7/97 1002 81 8.3 1130 0.8 0.92 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.98 8/27/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 48 4 4 4 4 4 4 3 3 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | | | | | | | | | | | 7/31/97 1300 80 8.0 859 1.1 3 0.70 93 120 190 8/7/97 1002 81 8.3 1130 0.8 0.92 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.98 8/27/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 10 48 4 4 4 4 4 3 3 Min 46 5.2 744 <0.4 | | | | | | | | | | | | | | | 8/7/97 1002 81 8.3 1130 0.8 0.92 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.98 8/27/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 49 48 10 48 4 4 4 4 3 3 3 Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | | | 3 | | 93 | 120 | 190 | | | | 8/14/97 1210 82 7.3 1160 0.6 0.91 8/21/97 1556 89 8.2 1220 0.6 0.98 8/27/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 4 4 4 3 3 3 Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | | | | 0.92 | | | | | | | 8/21/97 1556 89 8.2 1220 0.6 0.98 8/27/97 1135 78 5.8 1260 1.1 5 0.96 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 4 4 3 3 Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | 1160 | | | 0.91 | | | | | | | 9/5/97 0900 76 7.4 1190 0.6 0.85 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 3 3 Min 46 5.2 744 <0.4 | 8/21/97 | | 89 | 8.2 | 1220 | 0.6 | | 0.98 | | | | | | | 9/12/97 0920 78 7.3 873 0.7 0.62 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 3 3 Min 46 5.2 744 <0.4 | 8/27/97 | 1135 | 78 | 5.8 | 1260 | 1.1 | 5 | 0.96 | | | | | | | 9/18/97 1307 79 8.1 881 1.0 0.60 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 3 3 Min 46 5.2 744 <0.4 | 9/5/97 | 0900 | 76 | 7.4 | 1190 | 0.6 | | | | | | | | | 9/25/97 1455 84 7.6 1050 0.6 10 0.77 Count 48 49 49 48 10 48 4 4 4 3 3 Min 46 5.2 744 <0.4 | 9/12/97 | 0920 | 78 | 7.3 | 873 | 0.7 | | | | | | | | | Count 48 49 49 48 10 48 4 4 4 4 3 3 Min 46 5.2 744 <0.4 | | 1307 | 79 | | | | | | | | | | | | Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | 9/25/97 | 1455 | 84 | 7.6 | 1050 | 0.6 | 10 | 0.77 | | | | | | | Min 46 5.2 744 <0.4 3 0.56 93 120 180 34 23 Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | Count | | 48 | 49 | 49 | 48 | 10 | 48 | 4 | 4 | 4 | 3 | 3 | | Max 89 8.5 2960 1.7 11 2.9 320 490 430 74 59 Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | | | | | | | | | | | Mean 67 7.5 1390 0.8 6 1.2 168 218 253 49 36 Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | | | | | | | | | | | | | | | Geo Mean 66 7.5 1300 0.8 6 1.1 150 177 236 46 33 | 46 | | | | | | | | | | 6 | 0.96 | 130 | 130 | 200 | 39 | 27 | ### Inflow at San Luis Drain: check 17 (MER562) Location: Latitude: 36°57.980', Longitude 120°40.238'. In Sec. 21, T.11S., R.12E. Just west of South Dos Palos. Slightly downstream of point where the Grasslands Bypass empties into the San Luis Drain. | | Slightly | downstrea
Temp | ш ог рогп | it where the Gra
EC | ssiands By
Se | pass empti
Mo | es into the B | Cl | orain.
SO4 | HDNS | Diss Se | TSS | |----------|----------|--------------------------|-----------|------------------------|-------------------------|------------------|----------------------|------|---------------|------|---------|-------| | Date | Time | °F | рĦ | μmhos/cm | μg/L | μg/L · | | mg/L | mg/L | mg/L | ug/L | mg/L_ | | 10/3/96 | 1200 | 70 | 8.1 | 5210 | 77.4 | F-18-7 | 7.8 | | | | 79.1 | | | 10/8/96 | 1300 | 78 | 8.3 | 4220 | 75.5 | | 7.7 | | | | | 44 | | 10/18/96 | 1230 | 62 | 7.1 | 3940 | 38.6 | | 7.1 | | | | 37.5 | 140 | | 10/25/96 | 1450 | 58 | 8.3 | 4270 | 51.4 | | 6.7 | | | | 49.5 | | | 10/29/96 | 1400 | 54 | 8.1 | 4020 | 62.0 | 27 | NA | | | | 61.6 | | | 11/1/96 | 1310 | 62 | 7.4 | 3610 | NA | v | 5.1 | | | | | | | 11/8/96 | 1330 | 58 | 6.8 | 4250 | 61.3 | | 7.9 | | | | 61.1 | 42 | | 11/14/96 | 1130 | 58 | 8.1 | 4390 | 76.8 | | 7.3 | | | | | 51 | | 11/19/96 | 1100 | 64 | 7.7 | 3460 | 56.2 | | 5.6 | | | | 57.0 | 77 | | 11/26/96 | 1140 | 60 | 7.4 | 3470 | 40.6 | | 5.7 | | | | 39.6 | 64 | | 12/5/96 | 1222 | NA | 7.7 | 5000 | 68.4 | | 8.4 | | | | 69.9 | 49 | | 12/10/96 | 1400 | 58 | 7.0 | 4020 | NA | | NA | | | | 56.3 | 110 | | 12/20/96 | 1305 | 48 | 8.5 | 4970 | 80.4 | | 8.3 | | | | 80.2 | 56 | | 12/27/96 | 0945 | 55 | 7.8 | 5130 | 91.7 | | 8.2 | | | | 91.9 | 92
| | 1/9/97 | 0854 | 50 | 8.0 | 4710 | 78.7 | | 7.4 | | | | 76.6 | 90 | | 1/21/97 | 1315 | 61 | 8.0 | 4870 | 88.2 | 16 | 7.5 | | | | 84.8 | 180 | | 2/4/97 | 1006 | 62 | 8.0 | 5140 | 72.0 | | 8.7 | | | | 70.5 | 71 | | 2/11/97 | 1355 | 59 | 7.9 | 5360 | 97.5 | | 9.0 | | | | 96.6 | 58 | | 2/18/97 | 1245 | 55 | 7.9 | 5140 | 80.3 | | 8.3 | | | | 78.6 | 41 | | 2/28/97 | 1124 | 54 | 8.0 | 5330 | 90.3 | | 8.5 | | | | 86.4 | | | 3/5/97 | 1435 | 58 | 7.5 | 5100 | 88.4 | | 8.1 | | | | 91.1 | 38 | | 3/12/97 | 0950 | NA | NA | NA | 76.6 | | 6.9 | | | | 77.2 | | | 3/19/97 | 1050 | NA | NA | 4420 | 74.6 | | 6.8 | | | | 71.1 | 85 | | 3/26/97 | 1100 | NA | NA | 4580 | 67.0 | | 6.6 | | | | 61.0 | 160 | | 4/2/97 | 1115 | NA | NA | 5370 | 93.0 | | 8.1 | | | | 95.8 | 120 | | 4/9/97 | 1115 | NA | NA | 5600 | 108 | | 7.6 | | | | 117 | 130 | | 4/16/97 | 1140 | NA | NA | 5310 | 104 | | 7.1 | | | | 104 | 83 | | 4/23/97 | 1125 | NA | NA | 5290 | 101 | | 8.0 | | | | 97.6 | 110 | | 5/1/97 | 1113 | NA | NA | 5480 | 96.8 | | 8.4 | | | | 96.6 | 110 | | 5/7/97 | 1220 | NA | NA | 4930 | 73.6 | | 7.3 | | | | 73.0 | 62 | | 5/14/97 | 1130 | NA | NA | 4380 | 61.6 | | 6.8 | | | | 57.6 | 130 | | 5/21/97 | 1100 | NA | NA | 4380 | 65.0 | | 7.4 | | | | 63.6 | 160 | | 5/28/97 | 1130 | NA | NA | 4330 | 58.5 | | 7.0 | | | | 60.6 | 45 | | 6/4/97 | 1055 | NA | NA | 4780 | 52.1 | | 7.8 | | | | 50.6 | 87 | | 6/11/97 | 1120 | NA | NA | 4980 | 81.0 | | 8.7 | | | | 78.9 | 39 | | 6/18/97 | 1112 | NA | NA | 4690 | 67.5 | | 7.8 | | | | 63.1 | 170 | | 6/25/97 | 1141 | NA | NA | 4850 | 61.5 | | 8.5 | | | | 60.5 | 130 | | 7/2/97 | 1123 | NA | NA | 4660 | 65.8 | | 8.5 | | | | 64.1 | 130 | | 7/9/97 | 1117 | NA | NA | 4140 | 40.6 | | 7.7 | | | | 40.5 | 150 | | 7/16/97 | 1123 | NA | NA | 4220 | 54.5 | | 7.8 | | | | 53.0 | 120 | | 7/23/97 | 1119 | NA | NA | 4050 | 40.5 | | 7.1 | | | | 43.5 | 110 | | 7/30/97 | 1134 | NA | NA | 3950 | 45.5 | | 7.3 | | | | 44.6 | 170 | | 8/6/97 | 1130 | NA | NA | 4130 | 53.8 | | 7.8 | | | | 50.4 | 120 | | 8/13/97 | 1122 | NA | NA | 3650 | 38.4 | | 6.4 | | | | 39.0 | 140 | | 8/20/97 | 1106 | NA | NA | 3330 | 30.8 | | 6.4 | | | | 30.4 | 160 | | 8/27/97 | 1110 | NA | NA | 3990 | 55.4 | | 6.9 | | | | 53.7 | | | 9/3/97 | 0900 | NA | NA | 4250 | 52.1 | | 6.6 | | | | 49.4 | 65 | | 9/10/97 | 1130 | NA | NA | 2620 | 17.9 | | 4.2 | | | | 16.6 | 190 | | 9/17/97 | 1050 | NA | NA | 3160 | 22.8 | | 5.5 | | | | 21.8 | 94 | | 9/24/97 | 945 | NA | NA | 3460 | 29.0 | | 6.0 | | | | 28.0 | 96 | | | | | | | | · | | | | | | | | Count | | 20 | 21 | 49 | 48 | 2 | 48 | 0 | 0 | 0 | 47 | 43 | | Min | | 48 | 6.8 | 2620 | 17.9 | 16 | 4.2 | | | | 16.6 | 38 | | Max | | 78 | 8.5 | 5600 | 108 | 27 | 9.0 | | | | 117 | 190 | | Mean | | 59 | 7.8 | 4460 | 65.9 | 22 | 7.3 | | | | 64.5 | 100 | | Geo Mean | | 59
50 | 7.8 | 4405 | 61.7 | 21 | 7.3 | | | | 60.0 | 92 | | Median | | 58 | 7.9 | 4390 | 66.4 | 22 | 7.5 | | | | 61.6 | 96 | | | | | | | | OΕ | | | | | | | San Luis Drain @ Terminus (MER535) Location: Latitude 37°19'50", Longitude 120°57"03". In NW 1/4, NE 1/4, NW 1/4, Sec. 14, T.7S., R.9E. 5.0 miles east of Gustine, 3.5 miles SE of Highway 140. Located within Kesterson N. W. R. | | | Temp | | EC | Se | Mo | В | Cl | SO4 | HDNS | Ca | Mg | Diss Se | TSS | |----------------------|--------------|----------|------------|--------------|--------------|----------------|------------|------|------|------|------|------|--------------|----------| | Date | Time | °F | pH_ | μmhos/cm | μg/L | μ g/L · | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | μ g/L | mg/L_ | | 10/3/96 | 0915 | 70 | 7.9 | 4340 | 66.8 | | 6.4 | | | | | | 65.8 | _ | | 10/8/96 | 0930 | 74 | 7.3 | 4330 | 62.5 | | 6.9 | | | | | | 44.0 | 8 | | 10/18/96 | 0935 | 62 | 6.9 | 3590 | 43.0 | | 6.0 | | | | | | 41.8 | 67 | | 10/25/96 | 0859 | 58 | 8.0 | 4280 | 79.8 | | 7.2 | 160 | 1000 | 1000 | 000 | 70 | 77.2
54.8 | NA | | 10/29/96 | 1045 | 54 | 7.6 | 4260 | 54.6 | 35 | NA | 460 | 1200 | 1000 | 280 | 79 | 34.6 | | | 11/1/96 | 0915 | 60 | 7.4 | 4010 | NA | | 6.0
5.2 | | | | | | 42.1 | 12 | | 11/8/96 | 0900 | 55
50 | 8.0 | 3570
4330 | 43.2
58.0 | | 5.2
7.5 | | | | | | NA | 8 | | 11/14/96 | 0850 | 58 | 7.6
7.2 | 4330
4770 | 75.8 | | 8.4 | | | | | | 75.2 | 10 | | 11/19/96
11/26/96 | 0930
0950 | 62
60 | 7.2
7.4 | 3300 | 58.9 | 30 | 5.5 | 390 | 1100 | 860 | 230 | 69 | 56.4 | <1 | | 12/5/96 | 840 | NA | 7.4
7.1 | 3910 | 30.1 | 30 | 6.2 | 570 | 1100 | | | | 31.0 | 14 | | 12/3/96 | 1110 | 56 | 6.5 | 4330 | 38.9 | | 7.3 | | | | | | 39.0 | 25 | | 12/20/96 | 0945 | 46 | 8.1 | 4200 | 49.8 | | 7.1 | | | | | | 49.0 | 15 | | 12/27/96 | 1321 | 57 | 7.6 | 4000 | 60.8 | 23 | 5.9 | | | | | | 61.6 | 22 | | 1/9/97 | 1505 | 56 | 7.9 | 3830 | 33.3 | | 5.2 | | | | | | 34.2 | 12 | | 1/21/97 | 1050 | 54 | 7.9 | 4530 | 57.0 | 22 | 7.0 | 520 | 1400 | 1100 | 280 | 92 | 56.4 | 33 | | 2/4/97 | 1315 | 62 | 7.6 | 4510 | 63.6 | | 7.2 | | | | | | 61.8 | 27 | | 2/11/97 | 1050 | 58 | 7.8 | 5110 | 78.4 | | 8.3 | | | | | | 78.4 | 33 | | 2/18/97 | 1020 | 54 | 8.1 | 5150 | 79.7 | | 8.1 | | | | | | 83.2 | 34 | | 2/28/97 | 0905 | 50 | 8.3 | 4770 | 77.6 | 27 | 7.1 | | | | | | 73.4 | 26 | | 3/5/97 | 1700 | 58 | 8.3 | 5210 | 89.3 | | 8.2 | | | | | | 87.1 | 26 | | 3/13/97 | 0925 | 58 | 7.1 | 4630 | 91.8 | | 7.3 | | | | | | 84.4
70.4 | 27 | | 3/20/97 | 0925 | 64 | 8.4 | 4280 | 70.2 | • | 6.6 | | | | | | 78.1 | 45 | | 3/27/97 | 1445 | 72
50 | 8.5 | 4630 | 78.9 | 29 | 6.5 | | | | | | 93.7 | 33 | | 4/3/97 | 1050 | 59 | 8.1 | 5130 | 96.2 | | 7.4
7.2 | | | | | | 102 | 37 | | 4/10/97 | 0755 | 58 | 7.6
8.2 | 5270
5460 | 105
107 | | 7.2
7.8 | | | | | | 110 | 34 | | 4/17/97
4/24/97 | 1055
1048 | 71
65 | 8.2
8.0 | 5020 | 95.2 | 26 | 7.3 | 600 | 1700 | 1200 | 320 | 100 | 93.6 | 48 | | 4724797
5/2/97 | 0830 | 63 | 8.4 | 5080 | 72.6 | 20 | 7.3 | 000 | 1700 | 1200 | | | 73.7 | 39 | | 5/8/97 | 0750 | 67 | 8.3 | 5270 | 80.3 | | 7.7 | | | | | | 78.3 | 29 | | 5/15/97 | 0940 | 76 | 8.5 | 4670 | 75.2 | | 6.6 | | | | | | 75.7 | 28 | | 5/23/97 | 1105 | 74 | 8.2 | 4200 | 64.2 | | 6.7 | | | | | | 64.6 | 46 | | 5/29/97 | 0915 | 78 | 8.2 | 4350 | 62.3 | 23 | 7.1 | | | | | | 60.9 | 140 | | 6/5/97 | 1018 | 74 | 8.0 | 4820 | 72.8 | | 7.8 | | | | | | 70.4 | 46 | | 6/12/97 | 1015 | 76 | 8.5 | 4560 | 54.6 | | 7.9 | | | | | | 55.0 | 27 | | 6/19/97 | NA | NA | NA | NA | NA | | NA | | | | | | 71.3 | 23 | | 6/25/97 | 1135 | 76 | 8.3 | 4690 | 73.3 | 26 | 7.7 | | | | | | 73.6 | 13 | | 7/2/97 | 1230 | 76 | 8.4 | 4410 | 59.9 | | 7.8 | | | | | | 59.8 | 30
25 | | 7/10/97 | 1118 | 78 | 8.3 | 4030 | 34.9 | | 7.4 | | | | | | 35.0
37.0 | 18 | | 7/17/97 | 1120 | 80 | 8.2 | 4060 | 37.0 | | 7.4 | | | | | | 39.5 | 17 | | 7/24/97 | 1011 | 81 | 8.0 | 4000 | 41.8 | 05 | 7.1 | 420 | 1300 | 920 | | | 42.4 | 17 | | 7/31/97 | 1200 | 78 | 6.3 | 3940 | 43.7 | 25 | 7.2
5.6 | 420 | 1300 | 920 | | | 27.7 | 21 | | 8/7/97 | 0856 | 81 | 7.6 | 3190
3780 | 27.9
42.3 | | 6.8 | | | | | | 41.7 | 18 | | 8/14/97 | 1235 | 80 | 8.0
7.2 | 3760
3240 | 31.2 | | 5.3 | | | | | | 31.0 | 32 | | 8/21/97
8/27/97 | 1430
1200 | 82
78 | 7.2 | 3840 | 48.9 | 25 | 6.4 | | | | | | 47.2 | 17 | | 9/5/97 | 0930 | 82 | 8.1 | 3190 | 23.4 | 23 | 5.1 | | | | | | 23.3 | 25 | | 9/12/97 | 1020 | 78 | 7.9 | 2720 | 17.0 | | 4.4 | | | | | | 16.4 | 22 | | 9/18/97 | 1225 | 78 | 7.3 | 2920 | 17.1 | | 4.8 | | | | | | 17.0 | 22 | | 9/25/97 | 1535 | 82 | 8.0 | 3390 | 18.3 | 35 | 5.6 | | | | | | 18.4 | 19 | | Count | ŧ | 48 | 49 | 49 | 48 | 12 | 48 | 5 | 5 | 5 | 4 | 4 | 47 | 44 | | Min | | 46 | 6.3 | 2720 | 17.0 | 22 | 4.4 | 390 | 1100 | 860 | 230 | 69 | 16.4 | 8 | | Max | | 82 | 8.5 | 5460 | 107 | 35 | 8.4 | 600 | 1700 | 1200 | 320 | 100 | 110 | 140 | | Mear | | 67 | 7.8 | 4270 | 59.3 | 27.167 | 6.8 | 478 | 1340 | 1016 | 278 | 85 | 58.7 | 28 | | Geo Mear | | 66 | 7.8 | 4220 | 54.0 | 26.867 | | 472 | 1325 | 1009 | 276 | 84 | 53.4 | 23 | | Mediar | | 66 | 8.0 | 4330 | 60.4 | 26 | 7.1 | 460 | 1300 | 1000 | 280 | 86 | 60.9 | 25 | APPENDIX C Water Quality Data from Sigma Autosamplers: Water Years 1996 and 1997 | Map
Index | RWQCB
Site I.D. | Site Name | Period of
Record | Page | |--------------|--------------------|---|---------------------|------| | I-1 | MER556S | Main (Firebaugh) Drain @ Russell Ave. | 10/95-12/96 | 99 | | I-2 | MER501S | Panoche Drain | 10/95-1/97 | 101 | | I-4 | MER506S | Agatha Canal @ Mallard Road | 1/97-3/97 | 103 | | I-7 | MER505S | Camp 13 Slough | 1/97-3/97 | 104 | | O-2 | MER542S | Mud Slough (N) downstream of San Luis Drain | 10/95-3/97 | 105 | | 0-4 | MER531S | Salt Slough @ Lander Avenue | 10/95-3/97 | 107 | | SLD-2 | MER535S | San Luis Drain @ Terminus | 9/96-9/97 | 109 | ## Legend of Abbreviations | Degend of Apple viadous | | | | | | |-------------------------|-------------------------|--|--|--|--| | EC | Electrical Conductivity | | | | | | Se | Selenium | | | | | | В | Boron | | | | | ### Main (Firebaugh) Drain at Russel Avenue (MER556S) $Location: Latitude: \ 36^{\circ}55'27'', Longitude \ 120^{\circ}39'11''. \ In \ SW \ 1/4, \ SW \ 1/4, \ SW \ 1/4, \ Sec. \ 34, \ T.11S., R.12E.$ East side of Russel Avenue, 2.7 miles south of Dos Palos. AUTOSAMPLER DATA: 4 day composite samples | | EC | Se | В | | | | EC | Se | В | |--------------------|----------|--------------|--------|-----|---------------|---------|----------|------|--------| | Date | μmhos/cm | μ g/L | · mg/L | | | Date | μmhos/cm | g/L | . mg/L | | 10/4/95 | 2120 | 33.7 | 2.8 | | | 4/7/96 | 4540 | 119 | 5.4 | | 10/6/95 | 2870 | 50.7 | NA | | | 4/11/96 | 4770 | 120 | 5.8 | | 10/10/95 | 2630 | 56.4 | 3.4 | | | 4/15/96 | 4230 | 104 | 5.3 | | 10/14/95 | 2250 | 36.4 | 3.0 | | | 4/19/96 | 2990 | 61.9 | 3.4 | | 10/18/95 | 2060 | 27.4 | 2.9 | | | 4/23/96 | 3710 | 85.6 | 3.9 | | 10/22/95 | 2870 | 34.5 | 3.6 | | | 4/27/96 | 3590 | 90.8 | 3.9 | | 10/26/95 | 2630 | 29.4 | 3.5 | | | 5/1/96 | 4550 | 122 | 4.6 | | 10/30/95 |
3670 | 38.4 | 4.7 | | | 5/3/96 | 4030 | 94.0 | NA | | 11/3/95 | 3700 | 40.3 | 4.4 | | | 5/7/96 | 3390 | 74.3 | 3.6 | | 11/7/95 | 3060 | 42.8 | 4.2 | | | 5/11/96 | 3200 | 64.5 | 3.3 | | 11/11/95 | 2320 | 31.0 | 3.1 | | | 5/15/96 | 2920 | 54.6 | 3.0 | | 11/15/95 | 3140 | 48.0 | 4.6 | | | 5/16/96 | 2640 | 49.5 | NA | | 11/19/95 | 3250 | 30.1 | 4.2 | | | 5/20/96 | 2640 | 40.0 | 2.5 | | 11/24/95 | 2640 | 47.2 | 3.6 | | | 5/24/96 | 2770 | 46.2 | 3.1 | | 11/28/95 | 3330 | 60.4 | 4.8 | | | 5/28/96 | 2760 | 48.8 | 3.0 | | 12/2/95 | 2310 | 38.8 | 2.8 | | | 5/30/96 | 2610 | 44.5 | 3.0 | | 12/6/95 | 2550 | 53.3 | 2.9 | | unicentral re | 6/3/96 | 2870 | 43.6 | 3.4 | | 12/8/95 | 2220 | 42.6 | 2.6 | | | 6/7/96 | 2600 | 35.4 | 3.2 | | 12/12/95 | 2000 | 31.9 | 2.1 | | | 6/11/96 | 2910 | 43.1 | 3.5 | | 12/16/95 | 2200 | 35.4 | 2.3 | | | 6/15/96 | 2510 | 34.6 | 2.9 | | 12/20/95 | 3070 | 57.8 | 3.8 | | | 6/19/96 | 2570 | 34.9 | 3.0 | | 12/22/95 | 3390 | 65.2 | 4.4 | | | 6/23/96 | 3250 | 52.2 | 3.5 | | 12/26/95 | 4080 | 81.8 | 5.3 | | | 6/27/96 | 3410 | 57.4 | 3.6 | | 12/30/95 | 2890 | 56.4 | 3.5 | | | 7/1/96 | 3240 | 55.0 | 4.3 | | 1/3/96 | 5150 | 108 | 6.9 | | | 7/5/96 | 2870 | 44.8 | 4.1 | | 1/4/96 | NA | NA | NA | | | 7/9/96 | 2400 | 36.2 | 3.4 | | 1/8/96 | 3890 | NA | NA | | | 7/11/96 | 2530 | 35.8 | 3.7 | | 1/12/96 | 4600 | 83.8 | 5.7 | | | 7/15/96 | 3350 | 57.4 | 3.9 | | 1/16/96 | 5520 | 94.4 | 7.6 | | | 7/19/96 | 2400 | 34.2 | 3.2 | | 1/18/96 | NA | 122 | NA | | | 7/23/96 | 2350 | 32.2 | 3.3 | | 1/22/96 | 4540 | 112 | 6.7 | | | 7/25/96 | 2330 | 33.3 | 3.3 | | 1/26/96 | 3680 | 87.9 | 5.2 | | | 7/29/96 | 2060 | 27.8 | 2.8 | | 1/30/96 | 2870 | 55.6 | 3.4 | | | 8/2/96 | 1970 | 29.4 | 2.5 | | 2/2/96 | 2710 | 53.4 | 2.7 | 195 | a Fast i | 8/6/96 | 2040 | 31.0 | 2.9 | | 2/6/96 | 3560 | 63.2 | 3.4 | | | 8/8/96 | 1910 | 28.6 | 2.5 | | 2/10/96 | 4870 | 108 | NA | | | 8/12/96 | 1990 | 27.9 | 2.7 | | 2/14/96 | 4930 | 98.2 | NA | | | 8/16/96 | 1960 | 25.2 | 2.7 | | 2/16/96 | 4760 | 95.9 | 4.4 | | | 8/20/96 | 1830 | 26.0 | 2.6 | | 2/20/96 | 4890 | 102 | NA. | | | 8/23/96 | 1980 | 30.2 | 2.7 | | 2/23/96 | 4600 | 101 | NA | | | 8/27/96 | 2270 | 31.7 | 3.0 | | 2/28/96 | 4820 | 104 | NA | | | 8/31/96 | 2410 | 38.2 | 2.9 | | 3/1/96 | 5460 | 130 | NA | | | 9/4/96 | 2890 | 51.4 | 3.8 | | 3/5/96 | NA | NA. | NA | | | 9/5/96 | 2850 | 52.0 | NA | | 3/9/96 | NA | NA | NA | | | 9/9/96 | 2570 | 41.2 | 3.3 | | 3/13/96 | NA
NA | NA | NA | | | 9/13/96 | 2730 | 44.8 | 3.4 | | 3/13/96
3/17/96 | NA
NA | NA
NA | NA | | | 9/17/96 | 2610 | 36.7 | 3.3 | | 3/17/96 | 5160 | 136 | 6.2 | | | 9/21/96 | 2320 | 33.4 | 3.0 | | 3/26/96 | 4910 | 130 | 5.7 | | | 9/25/96 | 2740 | 31.8 | 3.2 | | 3/30/96 | 4070 | 108 | 4.7 | | 1 | 9/29/96 | 3280 | 35.0 | 3.7 | | 3/30/90
4/3/96 | 4610 | 121 | 5.7 | | | טעונשונ | 5200 | 22.0 | ~·, | | 413130 | 4010 | 121 | J. I | | l | | | | | | | | | | | | | | | | | Count | 93 | 93 | 82 | |----------|-------|------|-----| | Min | 1830 | 25.2 | 2.1 | | Max | 5520 | 136 | 7.6 | | Mean | 3185 | 59.7 | 3.8 | | Geo Mean | #NUM! | 52.9 | 3.6 | | Median | 2870 | 48.8 | 3.4 | ## Main (Firebaugh) Drain at Russel Avenue (MER556S) Location: Latitude: 36°55'27", Longitude 120°39'11". In SW 1/4, SW 1/4, SW 1/4, Sec. 34, T.11S.,R.12E. East side of Russel Avenue, 2.7 miles south of Dos Palos. AUTOS AMPLER DATA: 4 day composite samples | | EC | Se | В | |----------|----------|----------------|------| | Date | μmhos/cm | μg/L | mg/L | | 10/3/96 | 4500 | 68.0 | 6.2 | | 10/7/96 | 4290 | 71.4 | | | 10/8/96 | 4490 | 96.8 | | | 10/12/96 | 2750 | 36.3 | | | 10/16/96 | 3700 | 56.2 | | | 10/20/96 | 4530 | 76.2 | | | 10/24/96 | 3760 | 40.9 | | | 10/25/96 | 4050 | 40.8 | | | 10/29/96 | 4490 | 58.4 | | | 11/2/96 | 2690 | 28.8 | | | 11/6/96 | 4360 | 64.0 | | | 11/8/96 | 5210 | 80.5 | | | 11/12/96 | 4040 | 61.0 | | | 11/16/96 | 3170 | 51.8 | | | 11/19/96 | 2290 | 40.0 | | | 11/23/96 | 2550 | 45.4 | | | 11/27/96 | 3740 | 70.4 | | | 12/1/96 | 4740 | 108.0 | | | 12/5/96 | 5210 | 118.0 | | | 12/9/96 | 3410 | 72.4 | | | 12/13/96 | 3670 | 73.0 | | | 12/17/96 | 4800 | 103.0 | | | 12/20/96 | 5260 | 109.0 | | | 12/24/96 | 5420 | 122.0
125.0 | | | 12/26/96 | 5550 | 123.0 | | | Count | 25 | 25 | 1 | | Min | 2290 | 28.8 | 6.2 | | Max | 5550 | 125.0 | 6.2 | | Mean | 4107 | 72.7 | 6.2 | | Geo Mean | 3996 | 67.2 | 6.2 | | Median | 4290 | 70.4 | 6.2 | #### Panoche Drain at O'Banion Guage Station (MER501S) Location: Latitude 36°55'14", Longitude 120°41'43". In SW 1/4, SW 1/4, SW 1/4, Sec. 32, T.11S., R.12E. Located 0.5 miles south of CCID Main Canal, 1.9 miles west of Russel Road. 5.5 miles SW of Dos Palos. AUTOSAMPLER DATA: 4 DAY COMPOSITE SAMPLES | | EC | Se | В | | EC | Se | ${f B}$ | |----------------------|-------------------|------------------|------|--------------------|------------------|----------------|------------| | Date | μ mh os/cm | μ g/ ${f L}$ | mg/L | Date | μ mhos/cm | μ g/L - | mg/L | | 10/2/95 | 5220 | 149 | 7.9 | 4/7/96 | NA | NA | NA | | 10/6/95 | NA | NA | NA | 4/11/96 | NA | NA | NA | | 10/10/95 | 4710 | 23.4 | 7.8 | 4/15/96 | NA | NA | NA | | 10/14/95 | 5120 | 25.0 | 8.5 | 4/19/96 | NA | NA | NA | | 10/18/95 | 5100 | 50.5 | 8.8 | 4/23/96 | 4910 | 112 | 7.5 | | 10/22/95 | 5150 | 111 | 8.6 | 4/27/96 | 5000 | 110 | 7.8 | | 10/26/95 | 5050 | 116 | 8.4 | 5/1/96 | 4700 | 94.6 | 6.8 | | 10/30/95 | 4430 | 89.2 | 7.5 | 5/3/96 | 4910 | 112 | 7.3 | | 11/3/95 | 3860 | 69.6 | 6.3 | 5/7/96 | 4780 | 95.0 | 6.9 | | 11/7/95 | 3950 | 64.6 | 7.0 | 5/11/96 | 4920 | 89.0 | 7.1 | | 11/11/95 | 3970 | 74.7 | 6.6 | 5/15/96 | 4880 | 44.9 | 6.8 | | 11/15/95 | 3720 | 55.6 | 5.9 | 5/16/96 | 4500 | 95.0 | 5.9 | | 11/19/95 | 3480 | 53.0 | 5.8 | 5/20/96 | 4680 | 81.8 | 7.3 | | 11/24/95 | 3840 | 70.6 | 6.3 | 5/24/96 | 4630 | 76.9 | 7.1 | | 11/24/95 | 3950 | 74.2 | 6.0 | 5/28/96 | 4660 | 80.8 | 7.6 | | 12/2/95 | 3910 | 81.2 | 6.8 | 5/30/96 | 4660 | 75.4 | 7.7 | | 12/2/95 | 3380 | 68.1 | 5.5 | 6/3/96 | 4520 | NA | NA | | 12/8/95 | 3470 | 71.4 | 5.6 | 6/7/96 | 4830 | NA | NA | | 12/8/93 | 4220 | 85.2 | 5.8 | 6/11/96 | NA | NA | NA | | | 4190 | 91.2 | 5.7 | 6/13/96 | NA | NA | NA | | 12/16/95
12/20/95 | 4530 | 105 | 6.4 | 6/17/96 | 4550 | 64.1 | 6.8 | | | | 103 | 6.4 | 6/21/96 | 4750 | 72.4 | 7.5 | | 12/22/95 | 4690 | | | 6/25/96 | 4390 | 61.8 | 7.0 | | 12/26/95 | 5100 | 124 | 7.0 | | 4640 | 74.6 | 7.1 | | 12/30/95 | 5190 | 134 | 7.2 | 6/27/96
7/1/96 | 4540
4540 | 68.1 | 7.8 | | 1/3/96 | 4780 | 40.2 | 7.0 | 7/5/96 | 4420 | 68.3 | NA | | 1/4/96 | 4980 | 40.2 | 6.9 | 7/9/96 | 4420
NA | NA | NA
NA | | 1/8/96 | 4970 | 37.6 | 7.1 | | | NA
NA | NA
NA | | 1/12/96 | 5000 | 102 | 7.3 | 7/11/96 | NA
4870 | 76.0 | 8.3 | | 1/16/96 | 5040 | 120 | 7.0 | 7/15/96 | 4870
4540 | 63.6 | 6.3
7.4 | | 1/18/96 | 4670 | 106 | 6.5 | 7/19/96 | 4540
4430 | 69.8 | 7.4
7.4 | | 1/22/96 | 4180 | 95.6 | 6.1 | 7/23/96
7/25/96 | 4480 | 70.4 | 6.2 | | 1/26/96 | 4140 | 88.6 | 6.4 | | 4460
4460 | 70.4 | 7.4 | | 1/30/96 | 4010 | 82.8 | 6.3 | 7/29/96 | 4460
4260 | 66.2 | 7.4 | | 2/2/96 | 3050 | 53.2 | 4.4 | 8/2/96
8/6/96 | 4180 | 62.6 | 6.9 | | 2/6/96 | 4380 | 54.8 | 5.3 | 8/8/96 | 4240 | 69.5 | 7.3 | | 2/10/96 | 5440 | 90.8 | 6.8 | | | 68.2 | 7.5
7.5 | | 2/14/96 | 5580 | 96.4 | 7.0 | 8/12/96 | 4250
4230 | 69.0 | 7.3 | | 2/18/96 | 5410 | 83.1 | 7.0 | 8/16/96 | 4250
4060 | 62.8 | 7.5
7.0 | | 2/22/96 | 5360 | 79.1 | 6.9 | 8/20/96 | | | 6.8 | | 2/23/96 | 4960 | 75.8 | 7.2 | 8/23/96 | 3860 | 51.7 | | | 2/27/96 | 4650 | 80.0 | 6.5 | 8/27/96 | 3970
43.50 | 47.6
77.2 | 6.8
7.3 | | 3/1/96 | 4780 | 92.3 | 6.5 | 8/31/96 | 4350 | 70.2 | 7.5
7.0 | | 3/5/96 | 4980 | 114 | 7.3 | 9/4/96 | 4170 | 70.2 | NA | | 3/9/96 | 5150 | 109 | 7.3 | 9/5/96 | 4190 | 61.1 | 6.3 | | 3/13/96 | 4560 | 103 | 3.4 | 9/9/96 | 3830 | 60.0 | 6.1 | | 3/17/96 | 4760 | 88.2 | 7.0 | 9/13/96 | 3690 | | | | 3/18/96 | 3810 | 86.2 | NA | 9/17/96 | 4490
4370 | 78.4 | 7.5 | | 3/22/96 | 4920 | 100 | 7.2 | 9/21/96 | 4370 | 75.6 | 7.0 | | 3/26/96 | 5250 | 91.1 | 8.7 | 9/25/96 | 4890
5370 | 94.9 | 8.5
9.2 | | 3/30/96 | NA | NA | NA | 9/29/96 | 5370 | 112 | 9.2 | | 4/3/96 | NA | NA | NA | Count | 90 | 88 | 85 | | | | | | Min | 3050 | 23.4 | 3.4 | | | | | | Max | 5580 | 23.4
149 | 9.2 | | | | | | Mean | 4530 | 79.9 | 7.0 | | | | | | Geo Mean | 4500 | 76.2 | 6.9 | | | | | | Median | 4560
4560 | 76.2
76.5 | 7.0 | | | | | | Median | 4000 | 10.5 | 1.0 | #### Panoche Drain at O'Banion Gauge Station (MER501) Location: Latitude 36°55'14", Longitude 120°41'43". In SW 1/4, SW 1/4, SW 1/4, Sec. 32, T.11S., R.12E. Located 0.5 miles south of CCID Main Canal, 1.9 miles west of Russel Road. 5.5 miles SW of Dos Palos. AUTOSAMPLER DATA: Four day composite samples | | EC | Se | В | |----------|------------------|----------------|------| | Date | μ mhos/cm | μ g/I L | mg/L | | 10/3/96 | 5320 | 112.0 | 9.0 | | 10/7/96 | 4860 | 69.0 | | | 10/8/96 | 4710 | 66.2 | | | 10/12/96 | 4940 | 84.2 | | | 10/16/96 | 4880 | 100.6 | | | 10/20/96 | 4980 | 70.6 | | | 10/24/96 | 4870 | 65.2 | | | 10/25/96 | 4760 | 52.6 | | | 10/29/96 | 5070 | 88.9 | | | 11/2/96 | 4560 | 77.6 | | | 11/6/96 | 4960 | 83.1 | | | 11/8/96 | 5080 | 89.2 | | | 11/12/96 | 5160 | 116.0 | | | 11/16/96 | 5170 | 112.0 | | | 11/20/96 | 4800 | 100.0 | | | 11/24/96 | 4340 | 92.1 | | | 11/26/96 | 4420 | 65.5 | | | 11/30/96 | 4610 | 37.4 | | | 12/4/96 | 4910 | 38.8 | | | 12/5/96 | 4750 | 35.0 | | | 12/9/96 | 4750 | 35.4 | | | 12/13/96 | 4390 | 35.5 | | | 12/17/96 | 4710 | 60.4 | | | 12/20/96 | 5030 | 91.4 | | | 12/24/96 | 4330 | 76.4 | | | 12/28/96 | 4840 | 79.0 | | | 1/1/97 | 4580 | 79.4 | | | 1/5/97 | 3830 | 45.8
51.0 | | | 1/9/97 | 4330 | 31.0 | | | Count | 29 | 29 | 1 | | Min | 3830 | 35.0 | 9.0 | | Max | 5320 | 116.0 | 9.0 | | Mean | 4757 | 72.8 | 9.0 | | Geo Mean | 4746 | 68.4 | 9.0 | | Median | 4800 | 76.4 | 9.0 | ### Agatha Canal at Mallard Road (MER506S) Location: Latitude: 36°56'12", Longitude
120°42'07". In NE 1/4, NW 1/4, SW 1/4, Sec. 7, T.11S., R.11E. South of Sante Fe Grade at Brito, west of Mallard Road. 4.5 miles west of Dos Palos. AUTOSAMPLER DATA: 12 hour daily composite samples | | EC | Se | В | | EC | Se | В | |---------|------------------|--------------|------|----------|-------------------|--------------|--------| | Date | μ mhos/cm | μ g/L | mg/L |
Date | μ mh os/cm | μ g/L | · mg/L | | 1/9/97 | | | 0.41 | 2/22/97 | 246 | | | | 1/10/97 | 275 | | | 2/23/97 | 225 | 1.0 | | | 1/11/97 | 264 | | | 2/24/97 | 208 | | | | 1/12/97 | 286 | | | 2/25/97 | 211 | | | | 1/13/97 | 312 | | | 2/26/97 | 204 | | | | 1/14/97 | 257 | | | 2/27/97 | 205 | | | | 1/15/97 | 258 | | | 2/28/97 | 194 | | | | 1/16/97 | 259 | | | 3/1/97 | 196 | | | | 1/17/97 | 244 | | | 3/2/97 | 199 | | | | 1/18/97 | 243 | | | 3/3/97 | 203 | 1.3 | | | 1/19/97 | 236 | | | 3/4/97 | 195 | | | | 1/20/97 | 230 | | | 3/5/97 | 195 | | | | 1/21/97 | 227 | | | 35495 | 187 | | | | 1/22/97 | 244 | | | 3/7/97 | 161 | | | | 1/23/97 | 262 | | | 3/8/97 | 156 | 0.7 | | | 1/24/97 | 260 | | | 3/9/97 | 154 | | | | 1/25/97 | 285 | | | 3/10/97 | 148 | | | | 1/26/97 | 308 | | | 3/11/97 | 149 | | | | 1/27/97 | 342 | | | 3/12/97 | 145 | | | | 2/5/97 | 809 | 6.8 | 1.0 | 3/13/97 | 157 | 0.7 | | | 2/6/97 | 235 | | | 3/14/97 | 148 | | | | 2/7/97 | 119 | | | 3/15/97 | 148 | | | | 2/8/97 | 116 | | | 3/16/97 | 138 | | | | 2/9/97 | 125 | | | 3/17/97 | 232 | | | | 2/10/97 | 182 | | | 3/18/97 | 244 | | | | 2/11/97 | 235 | | | 3/19/97 | 235 | | | | 2/12/97 | 255 | 0.5 | 0.70 | 3/20/97 | 215 | | • | | 2/13/97 | 246 | | | 3/21/97 | 178 | | | | 2/14/97 | 229 | | | 3/22/97 | 173 | 0.8 | | | 2/15/97 | 221 | | | 3/23/97 | 196 | | | | 2/16/97 | 205 | | | 3/24/97 | 275 | | | | 2/17/97 | 198 | | | 3/25/97 | 308 | 1.6 | | | 2/18/97 | 202 | | | | | | | | 2/19/97 | 168 | | | | | | | | 2/20/97 | 158 | | | | | | | | 2/21/97 | 323 | 1.5 | 0.37 | | | | | | | | | |
 | | | | | | | | | Count | 67 | 9 | 4 | | | | | | Min | 116 | 0.5 | 0.37 | | | | | | Max | 809 | 6.8 | 1.0 | | | | | | Mean | 225 | 1.7 | 0.62 | | | | | | Geo Mean | 214 | 1.2 | 0.57 | | | | | | Median | 215 | 1.0 | 0.56 | Camp 13 Slough at Gauge Station (MER505S) Location: Latitude 36°56'21", Longitude 120°45'22". In SE 1/4, SE 1/4, SW 1/4, Sec. 27, T.11S., R.11E. 150 feet north of CCID Main Canal, 6.4 miles west of Russel Avenue. 9.2 miles SE of Los Banos. 6.7 miles SW of S. Dos Palos AUTOS AMPLER DATA: 12 hour daily composite samples | | EC | Se | В | | EC | Se | В | |---------|----------|------|--------|-------------|----------|-------|------| | Date | μmhos/cm | μg/L | · mg/L | <u>Date</u> | μmhos/cm | μg/L | mg/L | | 1/10/97 | 125 | | | 2/20/97 | 151 | | | | 1/11/97 | 150 | | | 2/21/97 | 149 | | | | 1/12/97 | 209 | | | 2/22/97 | 152 | | | | 1/13/97 | 147 | | | 2/23/97 | 149 | | | | 1/14/97 | 128 | | | 2/24/97 | 150 | | | | 1/15/97 | 140 | | | 2/25/97 | 144 | | | | 1/16/97 | 122 | | | 2/26/97 | 150 | | | | 1/17/97 | 142 | | | 2/27/97 | 158 | 0.5 | | | 1/18/97 | 145 | | | 2/28/97 | 152 | | | | 1/19/97 | 144 | | | 3/1/97 | 142 | | | | 1/20/97 | 148 | | | 3/2/97 | 143 | | | | 1/21/97 | 161 | | | 3/3/97 | 148 | | | | 1/22/97 | 176 | | | 3/4/97 | 146 | | | | 1/23/97 | 226 | | | 3/5/97 | 151 | < 0.4 | | | 1/24/97 | 269 | | | 3/6/97 | 1690 | | | | 1/25/97 | 375 | | | 3/7/97 | 1770 | | | | 1/26/97 | 681 | 2.3 | | 3/8/97 | 2030 | 4.2 | 3.1 | | 1/27/97 | 1980 | 19.2 | | 3/9/97 | 2350 | 4.6 | | | 1/28/97 | 2770 | 30.8 | | 3/10/97 | 2150 | | | | 1/29/97 | 2750 | 33.0 | 4.6 | 3/11/97 | 1960 | | | | 1/30/97 | 2640 | 31.0 | | 3/12/97 | 3990 | | | | 1/31/97 | 1700 | 18.6 | | 3/13/97 | 4630 | 21.2 | 7.7 | | 2/1/97 | 1210 | 12.6 | | 3/14/97 | 3340 | | | | 2/2/97 | 1230 | 15.3 | | 3/15/97 | 2960 | | | | 2/3/97 | 1120 | 16.0 | 1.5 | 3/16/97 | 1370 | | | | 2/4/97 | 1120 | 14.1 | | 3/17/97 | 1100 | | | | 2/5/97 | 263 | | | 3/18/97 | 1650 | | | | 2/6/97 | 388 | | | 3/19/97 | 2140 | | | | 2/7/97 | 497 | 0.6 | 0.67 | 3/20/97 | 2860 | 6.2 | | | 2/8/97 | 395 | | | 3/21/97 | 2670 | | | | 2/9/97 | 335 | | | 3/22/97 | 2990 | 10.2 | 5.2 | | 2/10/97 | 307 | | | 3/23/97 | 2750 | | | | 2/11/97 | 407 | | | 3/24/97 | 2260 | | | | 2/12/97 | 513 | 0.5 | 0.34 | 3/25/97 | 3760 | 6.3 | 6.9 | | 2/13/97 | 467 | | | | | | | | 2/14/97 | 420 | | | | | | | | 2/15/97 | 329 | | | | | | | | 2/16/97 | 183 | | | | | | | | 2/17/97 | 168 | | | | | | | | 2/18/97 | 163 | | | | | | | | 2/19/97 | 158 | | | | | | | | 2/17/7/ | 100 | | | | | | | | | | | | Count | 75 | 20 | 8 | | | | | | Min | 122 | <0.4 | 0.34 | | | | | | Max | 4630 | 33.0 | 7.7 | | | | | | Mean | 1030 | 12.4 | 3.8 | | | | | | Geo Mean | 505 | 6.1 | 2.5 | | | | | | Geo Mean | 202 | 44.4 | 2.5 | Median 375 3.9 11.4 #### Mud Slough (north) at San Luis Drain (MER542S) Location: Latitude 37°19'50", Longitude 120°57"03". In NW 1/4, NE 1/4, NW 1/4, Sec. 14, T.7S., R.9E. 5.0 miles east of Gustine, 3.5 miles SE of Highway 140. Located within Kesterson N. W. R. AUTOSAMPLER DATA: 4 DAY COMPOSITE SAMPLES | | EC | Se | В | | EC | Se | В | |-------------------|------------------|----------|----------|-----------|------------------|---------------|--------| | Date | μ mhos/cm | μg/L | · mg/L | Date | μ mhos/cm | μ g/ L | · mg/L | | 10/4/95 | 987 | 0.9 | 0.61 | 4/7/96 | 3230 | 3.0 | 3.3 | | 10/6/95 | 978 | 1.0 | 0.64 | 4/11/96 | 3540 | 1.7 | 3.8 | | 10/10/95 | 1120 | 1.0 | 0.75 | 4/15/96 | 3320 | 18.4 | 3.9 | | 10/14/95 | 985 | 0.9 | 0.69 | 4/19/96 | | 19.4 | 3.7 | | 10/18/95 | 610 | 1.0 | 0.45 | 4/23/96 | | 0.9 | 2.0 | | 10/22/95 | 732 | 0.8 | 0.53 | 4/27/96 | | 1.0 | 1.5 | | 10/26/95 | 791 | 0.7 | 0.58 | 5/1/96 | | 1.0 | 1.2 | | 10/30/95 | 756 | 0.7 | 0.58 | 5/3/96 | 3070 | 0.9 | 2.6 | | 11/3/95 | 837 | 1.0 | 0.66 | 5/7/96 | | 1.7 | 2.4 | | 11/7/95 | 858 | 0.7 | 0.71 | 5/11/96 | | 4.2 | 1.2 | | 11/11/95 | 889 | 0.7 | 0.70 | 5/15/96 | | 1.3 | 1.1 | | 11/15/95 | 952 | 0.6 | 0.76 | 5/20/96 | | 1.4 | 1.6 | | 11/19/95 | 1010 | 0.6 | 0.73 | 5/24/96 | | 1.4 | 1.6 | | 11/24/95 | 1100 | 0.5 | 0.81 | 5/28/96 | | 1.1 | 1.2 | | 11/28/95 | 1190 | 0.5 | 0.90 | 5/30/96 | | 0.7 | 1.3 | | 12/2/95 | 1210 | 0.5 | 0.92 | 6/3/96 | 1420 | 1.3 | 1.0 | | 12/6/95 | 1150 | 0.7 | 0.84 | 6/7/96 | | 1.0 | 1.8 | | 12/8/95 | 1200 | 0.6 | 0.85 | 6/11/96 | | 1.1 | 1.3 | | 12/12/95 | 1290 | 1.1 | 0.90 | 6/13/96 | | 1.2 | NA | | 12/16/95 | 1190 | 0.7 | 0.83 | 6/16/96 | | NA | NA | | 12/20/95 | 1230 | 0.6 | 0.89 | 6/17/96 | | NA | NA | | 12/22/95 | 1260 | 0.8 | 0.85 | 6/21/96 | | NA | NA | | 12/26/95 | 1340 | 0.7 | 1.0 | 6/25/96 | | NA | NA | | 12/30/95 | 1550 | 1.1 | 1.2 | 6/27/96 | | NA | NA | | 1/3/96 | 1760 | 0.8 | 1.3 | 7/1/96 | | 1.3 | 2.1 | | 1/4/96 | 1910 | 0.8 | 1.2 | 7/5/96 | | 1.5 | 2.4 | | 1/4/96 | 1880 | 0.9 | 1.4 | 7/9/96 | | 1.9 | 2.3 | | 1/12/96 | 2000 | 0.8 | 1.4 | 7/11/96 | | 2.4 | NA | | 1/16/96 | 1870 | 0.8 | 1.4 | 7/15/96 | | 1.3 | 1.8 | | 1/18/96 | 1840 | 0.7 | 1.4 | 7/19/96 | | 1.9 | 1.8 | | 1/22/96 | 1570 | 0.7 | 1.2 | 7/23/96 | | 1.1 | 2.7 | | 1/26/96 | 1550 | 0.6 | 1.1 | 7/25/96 | | 1.2 | NA | | 1/30/96 | 1750 | 0.6 | 1.3 | 7/29/96 | | 1.7 | 1.1 | | 2/2/96 | 1050 | 0.7 | 0.85 | 8/2/96 | | 1.2 | 0.96 | | 2/6/96 | 1010 | 0.7 | 0.81 | 8/6/96 | | 1.9 | 1.0 | | 2/10/96 | 910 | 0.6 | 0.75 | 8/8/96 | | 1.2 | NA | | 2/14/96 | 1590 | 0.6 | 1.4 | 8/12/96 | | 2.0 | 0.99 | | 2/14/96 | 1830 | 0.6 | 1.4 | 8/16/96 | | 1.5 | 1.5 | | 2/20/96 | 1810 | 2.2 | 1.4 | 8/20/96 | | 2.1 | 0.91 | | 2/24/96 | 5150 | 2.1 | 2.3 | 8/23/96 | | 1.6 | 1.1 | | 3/5/96 | NA | NA | NA | 8/27/96 | | 1.3 | 1.5 | | 3/9/96 | NA | NA | NA | 8/31/96 | | 1.9 | 1.0 | | 3/13/96 | NA | NA
NA | NA
NA | 9/4/96 | | 1.9 | 0.66 | | 3/13/96 | NA | NA | NA
NA | 9/9/96 | | NA | NA | | 3/18/96 | NA
NA | NA
NA | NA
NA | 9/13/96 | | NA | NA | | 3/18/96 | 2010 | 0.8 | 1.7 | 9/17/96 | | NA | NA | | 3/26/96 | 2120 | 1.2 | 1.9 | 9/21/96 | | NA | NA | | 3/30/96 | 2330 | 1.2 | 2.2 | 9/23/96 | | NA | NA | | 3/30/90
4/3/96 | 2380 | 1.3 | 2.1 | 9/27/96 | | 7.1 | 5.6 | | TIJIJU | 2300 | 13 | 2,1 | 1 7/2/170 | , 5070 | ,.1 | 5.0 | | | | | | · | ount 83 | 83 | 79 | Count 83 83 0.45 Min 610 0.5 19.4 5.6 Max 5150 1880 1.4 Mean 1.7 1.2 Geo Mean 1680 1.1 Median 1660 1.0 1.2 ## Mud Slough (north) at San Luis Drain (MER542S) Location: Latitude 37°19'50", Longitude 120°57"03" In NW 1/4, NE 1/4, NW 1/4, Sec.14, T.7S., R.9E 5 miles east of Gustine, 3.5 miles SE of Highway 140. Located within Kesterson N. W. R. AUTOSAMPLER DATA: Four day composite samples | | EC | Se | В | | EC | Se | В | |----------|----------|--------------|--------|-------|-------------|------|--------| | Date | μmhos/cm | μ g/L | · mg/L | Dat | te µmhos/cm | μg/L | · mg/L | | 10/1/96 | 3760 | 31.4 | 6.2 | 1/4/9 | 97 1570 | 9.9 | 2.0 | | 10/3/96 | 3340 | 50.6 | 4.9 | 1/8/9 | 97 NA | NA | NA | | 10/7/96 | 2380 | 27.8 | 3.1 | 1/9/9 | 97 1200 | 4.6 | NA | | 10/11/96 | 1950 | 17.6 | 2.5 | 1/13/ | 97 1380 | 5.7 | 1.6 | | 10/15/96 | 1960 | 15.8 | 2.6 | 1/17/ | 97 1900 | 12.2 | 2.2 | | 10/18/96 | 1830 | 14.0 | 2.5 | 1/21/ | 97 1620 | 9.5 | 1.8 | | 10/22/96 | 1480 | 7.4 | 1.8 | 1/25/ | 97 1620 | 9.6 | 1.8 | | 10/26/96 | 1460 | 7.7 | 1.7 | 1/29/ | 97 1280 | 7.6 | 1.4 | | 10/29/96 | 1720 | 8.4 | 2.1 | 2/2/9 | 97 1170 | 4.5 | 1.3 | | 11/2/96 | 1860 | 11.4 | 2.2 | 2/4/9 | 97 1290 | 6.7 | 1.5 | | 11/6/96 | 1740 | 10.0 | 2.0 | 2/8/9 | 97 1680 | 9.9 | 2.0 | | 11/10/96 | 1520 | 8.8 | 1.7 | 2/11/ | 97 2240 | 17.5 | 2.7 | | 11/14/96 | 1520 | 6.7 | 1.7 | 2/15/ | 97 2780 | 27.8 | 3.3 | | 11/18/96 | 1640 | 9.2 | 2.2 | 2/19/ | 97 3150 | 31.5 | 4.2 | | 11/22/96 | 1610 | 10.4 | 2.1 | 2/23/ | 97 3500 | 36.4 | 4.8 | | 11/26/96 | 1460 | 9.3 | 1.8 | 2/27/ | 97 3420 | 33.0 | 4.3 | | 11/30/96 | 1480 | 7.3 | 1.5 | 2/28/ | | 32.4 | NA | | 12/4/96 | 1660 | 6.6 | 1.8 | 3/4/5 | 97 3620 | 25.6 | 3.4 | | 12/8/96 | 1790 | 5.0 | 1.9 | 3/8/ | 97 3750 | 44.2 | 5.1 | | 12/10/96 | 1650 | 4.5 | 1.7 | 3/12/ | 97 3660 | 43.4 | 5.1 | | 12/14/96 | 1420 | 4.9 | 1.6 | 3/13/ | 97 3500 | 44.4 | | |
12/18/96 | 1360 | 5.5 | 1.5 | 3/17/ | /97 3460 | 42.2 | | | 12/22/96 | 1510 | 7.2 | 1.7 | 3/21/ | /97 3210 | 33.5 | | | 12/26/96 | 1490 | 7.2 | 1.7 | 3/25/ | /97 3140 | 28.4 | | | 12/31/96 | 1300 | 7.1 | 1.4 | | | | | | | | | | _ | | | 40 | | | | | | Cou | | 48 | 42 | | | | | | Mi | | 4.5 | 1.3 | | | | | | Ma | | 50.6 | 6.2 | | | | | | Mea | | 17.1 | 2.5 | | | | | | Geo M | | 12.9 | 2.3 | | | | | | Med | ian 1700 | 9.9 | 2.0 | ### Salt Slough at Lander Avenue (MER531S) Location: Latitude 37°14'55", Longitude 120°51'04". In NW 1/4, SE 1/4, SE 1/4, Sec. 10, T.8S., R.10E. 13.0 miles north of Los Banos. 5.0 miles south of Highway 140. AUTOSAMPLER DATA: 4 DAY COMPOSITE SAMPLES | | EC | Se | В | | | EC | Se | В | |----------|----------|--------------|--------|---|----------|------------------|------|------| | Date | μmhos/cm | μ g/L | · mg/L | | Date | μ mhos/cm | μg/L | mg/L | | 10/4/95 | 1090 | 7.2 | 0.95 | | 4/7/96 | 2230 | 16.6 | 1.9 | | 10/6/95 | 886 | 1.8 | 0.47 | | 4/11/96 | 2280 | 16.0 | 1.8 | | 10/10/95 | 1000 | 1.2 | 0.53 | | 4/15/96 | 2060 | 16.0 | 1.7 | | 10/14/95 | 1090 | 1.3 | 0.56 | | 4/19/96 | 1950 | 17.0 | 1.7 | | 10/18/95 | 938 | 2.1 | 0.56 | | 4/23/96 | 2140 | 22.1 | 2.0 | | 10/22/95 | 1300 | 9.2 | 1.2 | | 4/27/96 | 2520 | 27.2 | 2.4 | | 10/26/95 | 1540 | 14.8 | 1.6 | | 5/1/96 | 2800 | 33.8 | 2.7 | | 10/30/95 | 1500 | 11.2 | 1.4 | | 5/3/96 | 2890 | 31.2 | 2.8 | | 11/3/95 | 1570 | 7.8 | 1.3 | | 5/7/96 | 3170 | 37.8 | 3.0 | | 11/7/95 | 1610 | 8.9 | 1.5 | | 5/11/96 | 2320 | 25.2 | 2.2 | | 11/11/95 | 1680 | 7.9 | 1.4 | | 5/15/96 | 2100 | 19.9 | 1.9 | | 11/15/95 | 1640 | 8.4 | 1.4 | | 5/16/96 | 2310 | 20.8 | NA | | 11/19/95 | 1920 | 13.2 | 1.8 | | 5/20/96 | 1810 | 15.0 | 1.6 | | 11/24/95 | 1910 | 11.9 | 1.9 | | 5/24/96 | 1870 | 14.2 | 1.9 | | 11/28/95 | 1890 | 11.8 | 1.8 | | 5/28/96 | 1820 | 16.8 | 1.9 | | 12/2/95 | 1790 | 12.2 | 1.7 | | 6/1/96 | 2260 | 20.9 | 2.5 | | 12/6/95 | 1850 | 13.4 | 1.7 | | 6/5/96 | 2260 | 22.2 | 2.5 | | 12/8/95 | 1860 | 13.4 | 1.9 | | 6/9/96 | 2510 | 25.1 | 3.0 | | 12/12/95 | 2010 | 11.6 | 1.7 | | 6/13/96 | 2270 | 19.6 | 2.7 | | 12/16/95 | 1830 | 13.3 | 1.7 | | 6/17/96 | 2310 | 18.5 | 2.5 | | 12/20/95 | 1960 | 12.5 | 1.9 | | 6/21/96 | 2190 | 18.3 | 2.2 | | 12/22/95 | 2040 | 13.4 | 2.1 | | 6/25/96 | 2250 | 19.3 | 2.2 | | 12/26/95 | 2060 | 13.4 | 2.0 | | 6/27/96 | 2530 | 24.0 | 2.6 | | 12/30/95 | 2410 | 16.0 | 2.2 | | 7/1/96 | 2540 | NA | 2.9 | | 1/3/96 | 2500 | 16.2 | 2.4 | | 7/5/96 | 2350 | 22.8 | 2.7 | | 1/4/96 | 2400 | 5.7 | 2.0 | | 7/9/96 | 2060 | 17.1 | 2.3 | | 1/8/96 | 2620 | 6.1 | 2.2 | | 7/11/96 | 2140 | 18.4 | 2.4 | | 1/12/96 | 2850 | 10.4 | 1.7 | | 7/15/96 | 2300 | 21.4 | 2.6 | | 1/16/96 | 2900 | 24.2 | 2.8 | | 7/19/96 | 2330 | 20.4 | 2.7 | | 1/18/96 | 2780 | 28.2 | 2.8 | | 7/23/96 | 2240 | 20.2 | 2.7 | | 1/22/96 | 2510 | 29.8 | 2.8 | | 7/25/96 | 2120 | 18.8 | 2.7 | | 1/26/96 | 2270 | 20.6 | 2.6 | | 7/29/96 | 1860 | 16.4 | 2.2 | | 1/30/96 | 2340 | 21.8 | 2.6 | | 8/2/96 | 1740 | 15.8 | 2.1 | | 2/2/96 | 1900 | 14.0 | 2.0 | | 8/6/96 | 1730 | 15.4 | 2.0 | | 2/6/96 | 2000 | 12.9 | 1.9 | | 8/8/96 | 1530 | 12.8 | 1.8 | | 2/10/96 | 2110 | 15.7 | 2.1 | | 8/12/96 | 1600 | 13.4 | 1.8 | | 2/14/96 | 2550 | 22.6 | 2.6 | | 8/15/96 | 1470 | 12.1 | 1.6 | | 2/16/96 | 2570 | 23.0 | 2.6 | | 8/19/96 | NA | NA | NA | | 2/20/96 | 2420 | 22.4 | 2.6 | | 8/23/96 | NA | NA | NA | | 2/24/96 | 2290 | 18.6 | 2.0 | | 8/27/96 | NA | NA | NA | | 2/28/96 | 2020 | 17.6 | 1.9 | | 8/28/96 | NA | NA | NA | | 3/1/96 | 2070 | 15.8 | 2.0 | | 9/1/96 | 1650 | 15.4 | 1.8 | | 3/5/96 | 2260 | 17.9 | 2.1 | | 9/5/96 | 1510 | 12.8 | 1.5 | | 3/9/96 | 2250 | 16.9 | 2.1 | | 9/9/96 | 1890 | 16.9 | 2.2 | | 3/13/96 | 2430 | 19.0 | 2.2 | | 9/12/96 | 1630 | 13.6 | 1.8 | | 3/17/96 | 2300 | 17.7 | 2.1 | · | 9/16/96 | 1260 | 6.8 | 1.0 | | 3/18/96 | 1960 | 15.9 | NA | | 9/20/96 | 1630 | 14.0 | 1.6 | | 3/22/96 | 2130 | 17.1 | 2.1 | | 9/24/96 | 1540 | 11.4 | 1.5 | | 3/26/96 | 2110 | 17.4 | 2.5 | | 9/26/96 | 1280 | 7.4 | 1.0 | | 3/30/96 | 1940 | 11.8 | 1.9 | | 9/30/96 | 1160 | 1.5 | 0.6 | | 4/3/96 | 2020 | 17.8 | 2.1 | | ···· | | | | | | | | | | Count | 97 | 96 | 95 | | | | | | | Min | 886 | 1.2 | 0.47 | | | | | | | Max | 3170 | 37.8 | 3.0 | | | | | | | Mean | 2020 | 16.0 | 2.0 | | | | | | | Geo Mean | 1970 | 13.9 | 1.9 | | | | | | | Median | 2060 | 16.0 | 2.0 | ## Salt Slough at Lander Avenue (State Highway 165) (MER531S) Location: Latitude 37°14'55", Longitude 120°51'04". In NW 1/4, SE 1/4, SE 1/4, Sec. 10, T.8S., R.10E. 13.0 miles north of Los Banos. 5.0 miles south of Highway 140. AUTOSAMPLER DATA: Four day composite samples | | EC | Se | В | | EC | Se | В | |----------|------------------|------|--------|----------|------------------|----------------|--------| | Date | μ mhos/cm | μg/L | · mg/L |
Date | μ mhos/cm | μ g/I L | · mg/L | | 10/4/96 | 1210 | 1.5 | 0.64 | 1/4/97 | 1810 | 1.5 | 1.7 | | 10/8/96 | 1260 | 1.1 | 0.66 | 1/8/97 | 1840 | 0.9 | 1.3 | | 10/9/96 | 960 | 1.4 | NA | 1/9/97 | 1350 | 1.1 | | | 10/13/96 | 1020 | 1.2 | 0.52 | 1/13/97 | 1160 | 1.0 | 0.93 | | 10/17/96 | 1350 | 0.9 | 0.68 | 1/17/97 | 1460 | 0.9 | 1.2 | | 10/21/96 | 1460 | 0.8 | 0.71 | 1/21/97 | 1580 | 1.0 | 1.3 | | 10/24/96 | 1190 | 0.8 | 0.59 | 1/24/97 | 1610 | 1.0 | 1.3 | | 10/28/96 | 1510 | 1.5 | 0.85 | 1/28/97 | 1650 | 1.0 | 1.2 | | 11/1/96 | 1150 | 0.8 | 0.65 | 2/1/97 | 2070 | 6.3 | 1.9 | | 11/5/96 | 1090 | 0.9 | 0.74 | 2/5/97 | 1980 | 4.6 | 1.7 | | 11/7/96 | 1210 | 0.9 | 0.87 | 2/7/97 | 2060 | 5.9 | 1.9 | | 11/11/96 | 1380 | 1.0 | 1.0 | 2/11/97 | 1723 | 1.4 | 1.4 | | 11/15/96 | 1490 | 0.9 | 1.0 | 2/15/97 | 1660 | 0.8 | 1.2 | | 11/19/96 | 1360 | 1.2 | 0.92 | 2/19/97 | 1650 | 0.6 | 1.0 | | 11/22/96 | 1280 | 1.3 | 0.92 | 2/21/97 | 1460 | 0.5 | 0.82 | | 11/26/96 | 1540 | 1.1 | 1.0 | 2/25/97 | 1160 | 0.6 | 0.57 | | 11/30/96 | 1350 | 1.0 | 1.0 | 3/1/97 | 1070 | 0.7 | 0.53 | | 12/4/96 | 1400 | 1.0 | 1.0 | 3/5/97 | 1020 | 0.6 | 0.47 | | 12/6/96 | NA | NA | NA | 3/9/97 | 1170 | 0.7 | 0.51 | | 12/10/96 | 1500 | 1.1 | 1.1 | 3/13/97 | 1180 | 0.8 | 0.52 | | 12/14/96 | 1460 | 1.1 | 1.1 | 3/17/97 | 1230 | 1.2 | 0.72 | | 12/18/96 | 1590 | 1.0 | 1.1 | 3/21/97 | 1120 | 1.6 | | | 12/19/96 | 1620 | 0.86 | NA | 3/25/97 | 1360 | 1.2 | | | 12/23/96 | 1690 | 1.0 | 1.1 | | | | | | 12/27/96 | 1810 | 0.8 | 1.2 | | | | | | 12/31/96 | 1810 | 0.9 | 1.2 | | | | | | | | | | _ | | | 10 | | | | | | Count | 48 | 48 | 43 | | | | | | Min | 960 | 0.5 | 0.47 | | | | | | Max | 2070 | 6.3 | 1.9 | | | | | | Mean | 1440 | 1.3 | 1.0 | | | | | | Geo Mean | 1410 | 1.1 | 0.93 | | | | | | Median | 1430 | 1.0 | 1.0 | San Luis Drain @ Terminus (MER535S) Location: Latitude 37°19'50", Longitude 120°57"03". In NW 1/4, NE 1/4, NW 1/4, Sec. 14, T.7S., R.9E. 5.0 miles east of Gustine, 3.5 miles SE of Highway 140. Located within Kesterson N. W. R. AUTOSAMPLER DATA: 12 hour daily composite samples | | EC | Selenium | Boron | |----------|------------------|----------|-------| | Date | μ mhos/cm | μg/L | mg/L | | 9/13/96 | 7410 | | | | 9/14/96 | 7120 | | | | 9/15/96 | 7340 | | | | 9/16/96 | 8680 | | | | 9/17/96 | 7160 | | | | 9/18/96 | 7330 | | | | 9/19/96 | 7570 | | * . | | 9/20/96 | 7720 | | | | 9/21/96 | 7730 | | | | 9/22/96 | 7780 | | | | 9/23/96 | 9790 | | | | 9/24/96 | 8510 | | | | 9/25/96 | 9030 | | | | 9/26/96 | 7850 | | | | 9/27/96 | 4660 | 56.9 | | | 9/28/96 | 4570 | 71.6 | | | 9/29/96 | 5050 | 77.8 | | | 9/30/96 | | 86.5 | | | | 45 | | 2 | | Count | 17 | 4 | 0 | | Min | 4570 | 56.9 | | | Max | 9790 | 86.5 | | | Mean | 7371 | 73.2 | | | Geo Mean | 7220 | 72.4 | | | Median | 7570 | 74.7 | | San Luis Drain @ Terminus (MER535S) Location: Latitude 37°19'50", Longitude 120°57"03". In NW 1/4, NE 1/4, NW 1/4, Sec. 14, T.7S., R.9E. 5.0 miles east of Gustine, 3.5 miles SE of Highway 140. Located within Kesterson N. W. R. AUTOSAMPLER DATA: 12 hour daily composite samples | | EC | Se | В | | | EC | Se | В | |----------|------------------|--------------|------|---|----------|-------------------|--------------|------------| | Date | μ mhos/cm | μ g/L | mg/L | | Date | μ mh os/cm | μ g/L | mg/L | | 10/1/96 | 5360 | 90.3 | 8.6 | | 11/24/96 | 3510 | 61.4 | 6.1 | | 10/2/96 | 4400 | 106 | 9.3 | | 11/25/96 | 3200 | 51.8 | 5.5 | | 10/3/96 | 4340 | 66.3 | 7.3 | | 11/26/96 | 3180 | 52.4 | 4.9 | | 10/4/96 | 4440 | 59.0 | 6.9 | | 11/27/96 | 3750 | 63.9 | 6.2 | | 10/5/96 | 4460 | 56.4 | 7.0 | | 11/28/96 | 3670 | 68.2 | 6.0 | | 10/6/96 | 4290 | 61.3 | 7.0 | | 11/29/96 | 3520 | 57.3 | 5.6 | | 10/7/96 | 4610 | 59.8 | 6.7 | | 11/30/96 | 3540 | 53.3 | 5.6 | | 10/8/96 | 4710 | 63.0 | 7.1 | | 12/1/96 | 3720 | 46.1 | 6.1 | | 10/9/96 | 4710 | 64.8 | NA | | 12/2/96 | 3960 | 50.2 | 6.5 | | 10/10/96 | 5030 | 63.5 | 7.6 | | 12/3/96 | 4040 | 46.2 | 6.5 | | 10/11/96 | 5250 | 69.6 | 8.5 | | 12/4/96 | 3850 | 31.6 | 6.4 | | 10/12/96 | 4850 | 72.6 | 9.0 | | 12/5/96 | 3890 | 29.5 | NA | | 10/13/96 | 5460 | 52.6 | 8.2 | | 12/6/96 | 4100 | 38.3 | 6.7 | | 10/14/96 | NA | NA | NA | | 12/7/96 | 4170 | 39.3 | 6.5 | | 10/15/96 | NA | NA | NA | | 12/8/96 | 4080 | 38.2 | 6.2 | | 10/16/96 | NA | NA | NA | | 12/9/96 | 4110 | 34.8 | 6.4 | | 10/17/96 | NA | NA | NA | | 12/10/96 | 4190 | 34.7 | 7.1 | | 10/18/96 | NA , | NA | NA | | 12/11/96 | 4470 | 42.4 | 7.8 | | 10/19/96 | 3380 | 41.8 | 5.5 | | 12/12/96 | 4320 | 49.2 | 7.6 | | 10/20/96 | 3470 | 41.4 | 5.8 | | 12/13/96 | 3850 | 45.3 | 6.7 | | 10/21/96 | 3530 | 40.8 | 5.9 | | 12/14/96 | 3870 | 48.3 | 6.7 | | 10/22/96 | 3520 | 43.7 | 5.8 | 1 | 12/15/96 | 4100 | 51.8 | 7.4 | | 10/23/96 | 3900 | 49.8 | 6.7 | | 12/16/96 | 3850 | 50.9 | 6.9 | | 10/24/96 | 4260 | 78.4 | 7.1 | 1 | 12/17/96 | 3840 | 47.2 | 6.4 | | 10/25/96 | 4360 | 78.8 | 7.3 | 1 | 12/18/96 | 4020 | 50.8 | 6.9 | | 10/26/96 | 4260 | 59.8 | 7.2 | | 12/19/96 | 4140 | 51.1 | 7.3 | | 10/27/96 | 3940 | 40.3 | 6.7 | 1 | 12/20/96 | 4190 | 54.8 | 7.4 | | 10/28/96 | 4420 | 56.8 | 7.7 | İ | 12/21/96 | 4400 | 56.1 | 7.9 | | 10/29/96 | 4420 | 52.3 | NA | İ | 12/22/96 | 4470 | 51.9 |
7.9 | | 10/30/96 | 4240 | 60.3 | 6.8 | | 12/23/96 | 4530 | 63.4 | 8.1 | | 10/31/96 | 4200 | 51.9 | 6.1 | | 12/24/96 | 4860 | 71.0 | 8.3 | | 11/1/96 | 4080 | 43.6 | NA | | 12/25/96 | 4870 | 71.3 | 8.4 | | 11/2/96 | 4120 | 43.9 | 6.7 | | 12/26/96 | 4580 | 67.3 | 6.6 | | 11/3/96 | 4270 | 53.4 | 6.4 | | 12/27/96 | 4040 | 62.9 | 6.2 | | 11/4/96 | 4290 | 63.2 | 6.7 | | 12/28/96 | 4290 | 65.7 | 6.6 | | 11/5/96 | 4300 | 57.5 | 6.6 | | 12/29/96 | 5220 | 63.0 | 7.7 | | 11/6/96 | 4270 | 80.3 | 6.8 | | 12/30/96 | 4820 | 67.9 | 7.6 | | 11/7/96 | 3790 | 59.2 | 5.9 | | 12/31/96 | 4930 | 74.6 | 7.5 | | 11/8/96 | 3510 | 45.0 | 5.4 | | 1/1/97 | 5080 | 80.8 | 7.9 | | 11/9/96 | 3500 | 43.6 | 5.5 | | 1/2/97 | 4870 | 73.6 | 7.0 | | 11/10/96 | 3410 | 36.6 | 5.5 | İ | 1/3/97 | 4740 | 76.6 | 6.8 | | 11/11/96 | 3560 | 38.3 | 5.9 | | 1/4/97 | 4100 | 65.0 | 5.8 | | 11/12/96 | 3970 | 50.9 | 6.9 | | 1/5/97 | 4280 | 61.8 | 6.8 | | 11/13/96 | 4130 | 56.6 | 7.5 | | 1/6/97 | 4100 | 53.9 | 6.3 | | 11/14/96 | 4330 | 61.5 | 8.0 | | 1/7/97 | 3040 | 36.6 | 4.3 | | 11/15/96 | 4190 | 59.4 | 7.9 | | 1/8/97 | 3510 | 35.8 | 5.3 | | 11/16/96 | 4220 | 55.5 | 8.1 | | 1/9/97 | 4080 | 44.1 | 6.3 | | 11/17/96 | 4380 | 63.8 | 8.5 | | 1/10/97 | 4250 | 47.2* | 6.6* | | 11/18/96 | 4410 | 73.6 | 8.7 | | 1/11/97 | 4550
4650 | 60.0* | 7.5* | | 11/19/96 | 4400 | 75.2 | 8.5 | | 1/12/97 | 4650 | 64.0* | 7.3* | | 11/20/96 | 4170 | 69.6 | 8.0 | | 1/13/97 | NA
4700 | NA | NA
7.0* | | 11/21/96 | 4050 | 68.2 | 7.7 | | 1/14/97 | 4700 | 63.6* | 7.8* | | 11/22/96 | 4000 | 73.4 | 7.5 | | 1/15/97 | 4710 | 66.3* | 7.8* | | 11/23/96 | 3900 | 69.8 | 6.9 | I | 1/16/97 | 4830 | 66.8* | 8.2* | San Luis Drain @ Terminus (MER535S) continued | Date | EC
μmhos/cm | Se
µg/L | B
· mg/L | Date | EC
µmhos/cm | Se
μg/L | B
· mg/L | |--------------------------|----------------|--------------|-------------|---------|-----------------------|--------------|-------------| | | | | | | | | | | 1/17/97 | 4740 | 76.4* | 7.3* | 3/16/97 | 4860 | 87.6 | 7.0 | | 1/18/97 | 4730 | 70.3* | 7.7* | 3/17/97 | 4980 | 89.9 | 7.0 | | 1/19/97 | 4110 | 55.7* | 5.6* | 3/18/97 | 4780 | 86.8 | 6.6 | | 1/20/97 | 4360 | 55.2* | 6.9* | 3/19/97 | 4580 | 81.4 | 6.2 | | 1/21/97 | 4510 | 55.6* | NA | 3/20/97 | 4300 | 75.6 | 5.8 | | 1/22/97 | 4650 | 62.8 | 7.7 | 3/21/97 | 4550 | 82.1 | 6.6 | | 1/23/97 | 4540 | 66.2 | 7.5 | 3/22/97 | 4560 | 74.5 | 6.7 | | 1/24/97 | 4620 | 73.0 | 7.4 | 3/23/97 | 4630 | 69.8 | 6.3 | | 1/25/97 | 4170 | 59.7 | 6.5 | 3/24/97 | 4710 | 72.7 | 6.3 | | 1/26/97 | 4010 | 56.4 | 6.1 | 3/25/97 | 4890 | 79.0 | 6.8 | | 1/27/97 | 4270 | 59.6 | 6.3 | 3/26/97 | 4840 | 78.2 | 6.7 | | 1/28/97 | 4300 | 65.1 | 6.6 | 3/27/97 | 4710 | 82.0 | 6.8 | | 1/29/97 | 4360 | 57.0 | 6.8 | 3/28/97 | 4490 | 69.4 | 6.5 | | 1/30/97 | 3570 | 40.6 | 5.5 | 3/29/97 | 4580 | 78.0 | 6.6 | | 1/31/97 | 3450 | 34.2 | 5.4 | 3/30/97 | 4610 | 82.4 | 6.5 | | 2/1/97 | 4160 | 45.8 | 6.5 | 3/31/97 | 4710 | 89.0 | 6.5 | | 2/2/97 | 4430 | 47.4 | 7.0 | 4/1/97 | 4700 | 85.0 | 7.0 | | 2/3/97 | 4550 | 58.2 | 7.1 | 4/2/97 | 5020 | 90.6 | 7.4 | | 2/4/97 | 4550 | 65.8 | 7.2 | 4/3/97 | 5060 | 92.6 | 7.3 | | 2/5/97 | 4570 | 62.3 | 7.3 | 4/4/97 | 5510 | 104 | 7.9 | | 2/6/97 | 4810 | 65.9 | 7.9 | 4/5/97 | 5410 | 108 | 7.5 | | 2 <i>l</i> 7 <i>l</i> 97 | 5020 | 72.8 | 8.1 | 4/6/97 | 5420 | 112 | 7.5 | | 2/8/97 | 5260 | 91.2 | 7.9 | 4/7/97 | 5440 | 110 | 7.3 | | 2/9/97 | 5230 | 90.5 | 7.7 | 4/8/97 | 5490 | 110 | 7.4 | | 2/10/97 | 5080 | 86.2 | 8.1 | 4/9/97 | 5430 | 106 | 7.1 | | 2/11/97 | 4940 | 79.1 | 7.9 | 4/10/97 | 5420 | 106 | 7.1 | | 2/12/97 | 5270 | 87.8 | 8.1 | 4/11/97 | 5720 | 116 | 7.5 | | 2/13/97 | 5340 | 81.8 | 8.4 | 4/12/97 | 5760 | 113 | 7.6 | | 2/14/97 | 5360 | 89.5 | 8.4 | 4/13/97 | 5750 | 114 | 7.8 | | 2/15/97 | 5230 | 86.0 | 8.1 | 4/14/97 | 5480 | 108 | 7.5 | | 2/16/97 | 5200 | 86.0 | 7.9 | 4/15/97 | 5630 | 110 | 7.6 | | 2/17/97 | 5210 | 85.3 | 8.1 | 4/16/97 | NA | 116 | 7.5 | | 2/18/97 | 5220 | 80.9 | 8.2 | 4/17/97 | 5880 | 115 | 7.5 | | 2/19/97 | 5300 | 81.0 | 8.4 | 4/18/97 | 5530 | 116 | 7.5 | | 2/20/97 | 5270 | 83.7 | 8.4 | 4/19/97 | 5350 | 108 | 7.3 | | 2/21/97 | 5280 | 84.4 | 8.1 | 4/20/97 | 5350 | 106 | 7.3 | | 2/22/97 | 5160 | 78.3 | 8.0 | 4/20/97 | 5480 | 113 | 7.3
7.4 | | 2/23/97 | 5040 | 78.3
78.4 | 7.7 | 4/22/97 | 5510 | 110 | 7.4
7.5 | | 2/23/97
2/24/97 | 5050 | 76.4
84.0 | 7.7
7.7 | 4/23/97 | 5220 | 103 | 6.9 | | 2/25/97 | 4970 | | | E | 5010 | 96.6 | 6.8 | | | 5050 | 71.1
74.8 | 7.4 | 4/24/97 | 5090 | 90.6
97.6 | 7.1 | | 2/26/97 | | | 7.4 | 4/25/97 | | | | | 2/27/97 | 4700 | 70.0 | 6.9 | 4/26/97 | 5120
5260 | 98.6 | 7.1 | | 2/28/97 | 4890 | 77.4 | 7.2 | 4/27/97 | 5260
5200 | 104 | 7.3 | | 3/1/97 | 5080 | 75.4 | 7.7 | 4/28/97 | 5390
5020 | 108 | 7.4 | | 3/2/97 | 5090 | 82.4 | 8.0 | 4/29/97 | 5020 | 91.0 | 7.1 | | 3/3/97 | 5270 | 101 | 7.9 | 4/30/97 | 5090 | 96.6 | 7.0 | | 3/4/97 | 5200 | 97.9 | 7.9 | 5/1/97 | 4950
51 7 0 | 88.8 | 7.2 | | 3/5/97 | 5140 | 87.8 | 7.9 | 5/2/97 | 5170 | 88.4 | 7.1 | | 3/6/97 | 5030 | 86.4 | 7.8 | 5/3/97 | 5370 | 91.1 | 8.2 | | 3/7/97 | 5090 | 89.8 | 7.8 | 5/4/97 | 5520 | 96.6 | 8.5 | | 3/8/97 | 4960 | 88.4 | 7.5 | 5/5/97 | 5550 | 92.6 | 8.1 | | 3/9/97 | 5030 | 87.2 | 7.7 | 5/6/97 | 5530 | 102 | 9.0 | | 3/10/97 | 5030 | 96.9 | 7.5 | 5/7/97 | 5510 | 84.0 | 8.2 | | 3/11/97 | 4910 | 95.5 | 7.3 | 5/8/97 | 5490 | 85.7 | 7.8 | | 3/12/97 | 4800 | 86.3 | 7.0 | 5/9/97 | 5300 | 76.3 | 7.8 | | 3/13/97 | 4650 | 86.2 | 6.4 | 5/10/97 | 5050 | 79.1 | 7.1 | | 3/14/97 | 4610 | 82.2 | 6.5 | 5/11/97 | 4690 | 77.4 | 7.1 | | 3/15/97 | 4600 | 87.4 | 6.4 | 5/12/97 | 4760 | 77.9 | 7.3 | | | | | | 5/13/97 | 4860 | 82.7 | 7.7 | San Luis Drain @ Terminus (MER535S) continued | Date | EC
μmhos/cm | Se
μg/L | B
· mg/L | The 4e | EC | Se | B | |--------------------|----------------|--------------|-------------|---------|--------------|------|------------| | | | | | Date | μmhos/cm · | μg/L | · mg/L | | 5/14/97 | 4660 | 77.5 | 7.5 | 7/12/97 | 4120 | 39.0 | 7.8 | | 5/15/97 | 4570 | 72.4 | 7.2 | 7/13/97 | 3950 | 41.0 | 7.5 | | 5/16/97 | 4450 | 60.7 | 7.0 | 7/14/97 | 4050 | 46.9 | 7.2 | | 5/17/97 | 4550 | 65.8 | 7.0 | 7/15/97 | 4240 | 44.1 | 8.0 | | 5/18/97 | 4750 | 67.8 | 7.5 | 7/16/97 | 4260 | 43.8 | 8.0 | | 5/19/97 | 4690 | 68.4 | 7.3 | 7/17/97 | 4200 | 41.0 | 7.8 | | 5/20/97 | 4440 | 67.6 | 7.2 | 7/18/97 | 4300 | 44.1 | 8.1 | | 5/21/97 | 4420 | 71.4 | 6.9 | 7/19/97 | 4190 | 47.1 | 7.8 | | 5/22/97 | 4030 | 63.8 | 6.1 | 7/20/97 | 4110 | 57.4 | 7.6 | | 5/23/97 | 4230 | 64.4 | 6.8 | 7/21/97 | 4030 | 49.0 | 7.4 | | 5/24/97 | 4270 | 65.0 | 6.9 | 7/22/97 | 4150 | 52.8 | 7.3 | | 5/25/97 | 4720 | 72.0 | 8.1 | 7/23/97 | 4090 | 47.0 | 7.5 | | 5/26/97 | 4580 | 63.9 | 7.8 | 7/24/97 | 4190 | 46.2 | 7.8 | | 5/27/97 | 4570 | 66.6 | 7.7 | 7/25/97 | 4220 | 43.6 | 8.1 | | 5/28/97 | 4560 | 68.2 | 7.7 | 7/26/97 | 4180 | 44.0 | 7.8 | | 5/29/97 | 4460 | 66.5 | 7.7 | 7/27/97 | 3900 | 37.9 | 7.2 | | 5/30/97 | 4400 | 70.0 | 6.5 | 7/28/97 | 3950 | 44.0 | 7.3 | | 5/31/97 | 4520 | 72.0 | 6.9 | 7/29/97 | 4050 | 44.3 | 7.3 | | 6/1/97 | 4580 | 80.4 | 6.9 | 7/30/97 | 4000 | 40.0 | 7.3 | | 6/2/97 | 4770 | 78.8 | 7.4 | | | | 7.3
7.0 | | | | | | 7/31/97 | 3850 | 40.2 | | | 6/3/97 | 4730 | 75.8 | 7.4 | 8/1/97 | 3760 | 42.6 | 6.9 | | 6/4/97 | 4820 | 77.2 | 7.6 | 8/2/97 | 3620 | 39.2 | 6.5 | | 6/5/97 | 4800 | 75.7 | 7.8 | 8/3/97 | 3570 | 36.6 | 6.5 | | 6/6/97 | 4680 | 56.7 | 7.6 | 8/4/97 | 3540 | 32.9 | 6.4 | | 6/7/97 | 4660 | 55.8 | 7.6 | 8/5/97 | 3460 | 34.7 | 6.1 | | 6/8/97 | 4680 | 56.5 | 7.3 | 8/6/97 | 3810 | 41.2 | 6.4 | | 6/9/97 | 4780 | 51.3 | 8.1 | 8/7/97 | 3610 | 34.0 | 6.3 | | 6/10/97 | 4680 | 45.4 | 8.0 | 8/8/97 | 4250 | 51.0 | 7.7 | | 6/11/97 | 4770 | 56.8 | 8.0 | 8/9/97 | 4090 | 46.1 | 7.3 | | 6/12/97 | 4590 | 58.4 | 7.9 | 8/10/97 | 3880 | 46.9 | 6.8 | | 6/13/97 | 5040 | 78.6 | 9.0 | 8/11/97 | 3830 | 48.4 | 6.7 | | 6/14/97 | 4910 | 64.4 | 8.8 | 8/12/97 | 3870 | 46.0 | 6.8 | | 6/15/97 | 4850 | 67.8 | 8.7 | 8/13/97 | 3680 | 37.8 | 6.5 | | 6/16/97 | 4840 | 69.0 | 8.7 | 8/14/97 | 3730 | 38.4 | 6.4 | | 6/17/97 | 4820 | 73.0 | 8.6 | 8/15/97 | 3710 | 41.6 | 6.2 | | 6/18/97 | 4300 | 61.2 | 7.4 | 8/16/97 | 3430 | 35.6 | 5.8 | | 6/19/97 | 4440 | 65.4 | 7.6 | 8/17/97 | 3240 | 32.0 | 5.3 | | 6/20/97 | 4540 | 66.7 | 7.9 | 8/18/97 | 3430 | 40.3 | 5.6 | | 6/21/97 | 4380 | 57.2 | 7.6 | 8/19/97 | 3590 | 47.4 | 5.6 | | 6/22/97 | 4580 | 74.7 | 7.4 | 8/20/97 | 3330 | 37.8 | 5.6 | | 6/23/97 | 4410 | 67.7 | 7.4 | 8/21/97 | 3470 | 39.7 | 5.5 | | 6/24/97 | 4450 | 66.2 | 7.3 | 8/22/97 | 3820 | 39.5 | 6.2 | | 6/25/97 | 4260 | 55.8 | 7.2 | 8/23/97 | 3550 | 32.7 | 6.1 | | 6/26/97 | 4680 | 68.1 | 8.3 | 8/24/97 | 3450 | 40.5 | 6.0 | | 6/27/97 | 4650 | 59.1 | 8.1 | 8/25/97 | 3270 | 31.0 | 5.7 | | 6/28/97 | 4570 | 56.8 | 8.1 | 8/26/97 | 3540 | 35.7 | 6.1 | | 6/29/97 | 4530 | 54.2 | 8.1 | 8/27/97 | 3790 | 45.2 | 6.2 | | 6/30/97 | 4470 | 53.0 | 7.9 | 8/28/97 | 4020 | 51.6 | 6.3 | | 7/1/97 | 4480 | 66.8 | 8.3 | 8/29/97 | 4140 | 50.8 | 6.6 | | 7/2/97 | 4540 | 62.8 | 7.9 | 8/30/97 | 3880 | 38.3 | 6.4 | | 7/3/97 | 4400 | 57.4 | 7.6 | 8/31/97 | 3870 | 43.2 | 6.4 | | 7/4/97 | 4430 | 54.8 | 7.8 | 9/1/97 | 4230 | 55.8 | 6.3 | | 7/5/97 | 4430
4670 | 61.4 | 7.8
8.5 | 9/1/97 | 4230 | 52.0 | 6.4 | | | | | | | | | | | 7/6/97 | 4510 | 49.9
51.1 | 8.4 | 9/3/97 | 3920
3440 | 43.0 | 5.8 | | 7/7/97 | 4350 | 51.1 | 7.9 | 9/4/97 | 3440 | 29.3 | 5.4 | | 7/8/97 | 4090 | 42.9 | 7.4 | 9/5/97 | 3290 | 26.6 | 5.2 | | 7/9/97 | 4410 | 61.2 | 7.7 | 9/6/97 | 3680 | 36.0 | 6.0 | | 7/10/97
7/11/97 | 4060
4330 | 43.4 | 7.5 | 9/7/97 | 3480 | 27.7 | 5.6
6.1 | | | | 45.8 | 8.1 | 9/8/97 | 3760 | 24.3 | / 1 | San Luis Drain @ Terminus (MER535S) continued | | EC | Se | В | | | |----------|------------------|------|--------|--|--| | Date | μ mhos/cm | μg/L | · mg/L | | | | 9/9/97 | 3410 | 22.1 | 5.8 | | | | 9/10/97 | 3100 | 20.6 | 5.2 | | | | 9/11/97 | 3150 | 25.4 | 5.1 | | | | 9/12/97 | 2960 | 20.1 | 4.6 | | | | 9/13/97 |
3260 | 27.4 | 5.0 | | | | 9/14/97 | 3240 | 28.2 | 5.0 | | | | 9/15/97 | 2740 | 18.4 | 4.2 | | | | 9/16/97 | 2630 | 16.5 | 4.1 | | | | 9/17/97 | 2620 | 15.2 | 4.1 | | | | 9/18/97 | 2950 | 16.6 | 4.5 | | | | 9/19/97 | 2980 | 18.4 | 4.6 | | | | 9/20/97 | 2940 | 18.0 | 4.6 | | | | 9/21/97 | 2890 | 19.0 | 4.6 | | | | 9/22/97 | 3070 | 20.9 | 4.7 | | | | 9/23/97 | 3320 | 21.6 | 5.2 | | | | 9/24/97 | 3440 | 19.9 | 5.4 | | | | 9/25/97 | 3520 | 20.0 | 5.4 | | | | 9/26/97 | 3590 | 20.1 | 5.9 | | | | 9/27/97 | 3700 | 20.9 | 6.1 | | | | 9/28/97 | 3530 | 20.7 | 5.7 | | | | 9/29/97 | 3470 | 22.0 | 5.6 | | | | 9/30/97 | 3900 | 32.2 | 5.9 | | | | | | | | | | | Count | 358 | 348 | 344 | | | | Min | 2620 | 15.2 | 4.1 | | | | Max | 5880 | 116 | 9.3 | | | | Mean | 4390 | 62.4 | 7.0 | | | | Geo Mean | 4340 | 57.7 | 6.9 | | | | Median | 4420 | 61.5 | 7.2 | | | ^{*} Data under review # APPENDIX D Impact of January 1997 Flood Flows Diverted Around the Grassland Bypass and into Camp 13 Ditch and the Agatha Canal (Data from USBR, 1997) # **Key to Data Sources** GWD = Grassland Water District Board = Central Valley Regional Water Quality Control Board USBR = US Bureau of Reclamation # APPENDIX D (Table taken from USBR, 1997) Table 1. Camp 13 Ditch and Agatha Canal releases, selenium concentrations and selenium loads, with associated inflow to the San Luis Drain (Monitoring Station A), for period of January 21 through February 10, 1997 | | Camp 13 Ditch | | | | Agatha | | | | | |----------------------|---------------|-------|-------|----------|--------|--------|-------|----------|--------| | Seleni | | | | | | | nium | Drain (A | | | Parameter | Flow | EC | Conc. | Load | Flow | EC | Conc. | Load | Inflow | | Data Source | GWD | GWD | | Computed | GWD | | Board | Computed | USBR | | Units | cfs | umhos | ug/l | lbs | cfs | umhos | ug/l | lbs | cfs | | Jan. 21, 1997 | 91 | 360 | na | na | 25 | 250 | na | na | 71 | | Jan. 22, 1997 | 91 | 300 | na | na | 25 | 300 | na | na | 75 | | Jan. 23, 1997 | 91 | 300 | na | na | 25 | 300 | na | na | 76 | | Jan. 24, 1997 | 80 | 300 | na | na | 25 | 300 | na | na | 78 | | Jan. 25, 1997 | 80 | 300 | na | na | 25 | 300 | na | na | 80 | | Jan. 26, 1997 | 80 | 300 | na | na | 25 | 300 | na | na | 76 | | Jan. 27, 1997 | 220 | 3300* | 19.2 | 22.8 | 25 | 300 | na | na | 74 | | Jan. 28, 1997 | 150 | 2900* | 30.8 | 24.9 | 25 | 300 | na | na | 34 | | Jan. 29, 1997 | 100 | 2900* | 33.0 | 17.8 | 25 | 300 | na | na | 50 | | Jan. 30, 1997 | 100 | 3100* | 31.0 | 16.7 | 25 | 300 | na | na | 64 | | Jan. 31, 1997 | 65 | 2300* | 18.6 | 6.5 | 25 | 300 | na | na | 82 | | Feb. 1, 1997 | 111 | 1700* | 12.6 | 7.5 | - 20 | 300 | na | na | 77 | | Feb. 2, 1997 | 111 | 1600* | 15.3 | 9.2 | 20 | 300 | na | na | 71 | | Feb. 3, 1997 | 111 | 1500* | 16.0 | 9.6 | 20 | 200 | na | na | 79 | | Feb. 4, 1997 | 110 | 1000* | 14.1 | 8.4 | 70 | 3900** | 33.0 | 12.5 | 38 | | Feb. 5, 1997 | 83 | 360 | na | na | 20 | 809*** | 6.8 | 0.7 | 87 | | Feb. 6, 1997 | 83 | 360 | na | na | 20 | 300 | na | na | 92 | | Feb. 7, 1997 | 20 | 200 | na | na | 45 | 200 | na | na | 93 | | Feb. 8, 1997 | 20 | 200 | na | na | 45 | 200 | na | na | 95 | | Feb. 9, 1997 | 20 | 200 | na | na | 45 | 200 | na | na | 88 | | Feb.10, 1997 | 28 | 200 | na | na | 45 | 200 | па | na | 85 | | Total selenium loads | | 123.4 | | | | 13.2 | | | | ^{*} Indicates commingled drainage waters ^{**} Indicates commingled drainage waters, selenium value estimated ^{***} Indicates commingled drainage waters, EC source is CVRWQCB